Shih-Jen Weng

Learn More
Autism spectrum disorders (ASD) impact social functioning and communication, and individuals with these disorders often have restrictive and repetitive behaviors. Accumulating data indicate that ASD is associated with alterations of neural circuitry. Functional MRI (FMRI) studies have focused on connectivity in the context of psychological tasks. However,(More)
Autism spectrum disorders (ASD) are associated with disturbances of neural connectivity. Functional connectivity between neural structures is typically examined within the context of a cognitive task, but also exists in the absence of a task (i.e., "rest"). Connectivity during rest is particularly active in a set of structures called the default network,(More)
BACKGROUND Autism spectrum disorders (ASD) are associated with severe impairments in social functioning. Because faces provide nonverbal cues that support social interactions, many studies of ASD have examined neural structures that process faces, including the amygdala, ventromedial prefrontal cortex and superior and middle temporal gyri. However,(More)
BACKGROUND Autism spectrum disorders (ASD) involve a core deficit in social functioning and impairments in the ability to recognize face emotions. In an emotional faces task designed to constrain group differences in attention, the present study used functional MRI to characterize activation in the amygdala, ventral prefrontal cortex (vPFC), and striatum,(More)
A fundamental component of brain development is the formation of large-scale networks across the cortex. One such network, the default network, undergoes a protracted development, displaying weak connectivity in childhood that strengthens in adolescence and becomes most robust in adulthood. Little is known about the genetic contributions to default network(More)
Healthy individuals show robust functional connectivity during rest, which is stronger in adults than in children. Connectivity occurs between the posterior and anterior portions of the default network, a group of structures active in the absence of a task, including the posterior cingulate cortex and the superior frontal gyrus. Previous studies found(More)
As a family of techniques, the Golgi methods have long been used for studying the morphology and structure of the central nervous system. Due to their capricious nature, many modifications have been employed to improve the reliability and quality of the technique, including the recent addition of microwave energy. In the present study, we evaluated the(More)
  • 1