Shih-Chieh Fan Chiang

Learn More
Accumulation of peptide-linked DNA breaks contributes to neurodegeration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1) and human hereditary ataxia. TDP1 primarily operates at single-strand breaks (SSBs) created by oxidative stress or by collision of transcription machinery with topoisomerase I intermediates (Top1-CCs).(More)
Postsynaptic densities (PSDs) isolated by biochemical means consist of a complex mixture of proteins that tightly bond to each other. The purpose of this report is to study whether the numerous interprotein disulfides found in the isolated PSDs contribute to the tight structure of the PSDs and whether these interprotein disulfides exist in vivo. PSDs were(More)
Breaking and sealing one strand of DNA is an inherent feature of chromosome metabolism to overcome torsional barriers. Failure to reseal broken DNA strands results in protein-linked DNA breaks, causing neurodegeneration in humans. This is typified by defects in tyrosyl DNA phosphodiesterase 1 (TDP1), which removes stalled topoisomerase 1 peptides from DNA(More)
Palate, lung and nasal epithelial clone (PLUNC) proteins are structural homologues to the innate defence molecules LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI). PLUNCs make up the largest portion of the wider BPI/LBP/PLUNC-like protein family and are amongst the most rapidly evolving mammalian genes. In this study we(More)
Aprataxin (APTX) deficiency causes progressive cerebellar degeneration, ataxia and oculomotor apraxia in man. Cell free assays and crystal structure studies demonstrate a role for APTX in resolving 5'-adenylated nucleic acid breaks, however, APTX function in vertebrates remains unclear due to the lack of an appropriate model system. Here, we generated a(More)
  • 1