Shigeto Furukawa

Learn More
Previous studies have demonstrated that the spike patterns of cortical neurons vary systematically as a function of sound-source location such that the response of a single neuron can signal the location of a sound source throughout 360 degrees of azimuth. The present study examined specific features of spike patterns that might transmit information related(More)
The present study measured the head-related transfer functions (HRTFs) of the Mongolian gerbil for various sound-source directions, and explored acoustical cues for sound localization that could be available to the animals. The HRTF exhibited spectral notches for frequencies above 25 kHz. The notch frequency varied systematically with source direction, and(More)
Sound localization in the horizontal plane is mainly determined by interaural time differences (ITD) and interaural level differences (ILD). Both cues result in an estimate of sound source location and in many real-life situations these two cues are roughly congruent. When stimulating listeners with headphones it is possible to counterbalance the two cues,(More)
Efforts to locate a cortical map of auditory space generally have proven unsuccessful. At moderate sound levels, cortical neurons generally show large or unbounded spatial receptive fields. Within those large receptive fields, however, changes in sound location result in systematic changes in the temporal firing patterns such that single-neuron firing(More)
A pupillary dilation response is known to be evoked by salient deviant or contrast auditory stimuli, but so far a direct link between it and subjective salience has been lacking. In two experiments, participants listened to various environmental sounds while their pupillary responses were recorded. In separate sessions, participants performed subjective(More)
This study explored the source of inter-listener variability in the performance of lateralization tasks based on interaural time or level differences (ITDs or ILDs) by examining correlation of performance between pairs of multiple psychoacoustical tasks. The ITD, ILD, Time, and Level tasks were intended to measure sensitivities to ITD; ILD; temporal fine(More)
The temporal fine structure (TFS) of acoustical signals, represented as the phase-locking pattern of the auditory nerve, is the major information for listeners performing a variety of auditory tasks, e.g., judging pitch and detecting interaural time differences (ITDs). Two experiments tested the hypothesis that processes for TFS-based pitch and ITD involve(More)
Although physiological studies have revealed segregated binaural pathways, namely the medial and lateral superior olives, it is unclear whether the human auditory system has separate mechanisms for different cue types (interaural time and intensity differences; ITD and IID, respectively) and for operating frequency ranges. This study hypothesized "channels"(More)
To make sense of complex auditory scenes, the auditory system sequentially organizes auditory components into perceptual objects or streams. In the conventional view of this process, the cortex plays a major role in perceptual organization, and subcortical mechanisms merely provide the cortex with acoustical features. Here, we show that the neural(More)
Previous studies have indicated that extended exposure to a high level of sound might increase the risk of hearing loss among professional symphony orchestra musicians. One of the major problems associated with musicians' hearing loss is difficulty in estimating its risk simply on the basis of the physical amount of exposure, i.e. the exposure level and(More)