Shigeru Hanamata

Learn More
Although cytosolic free Ca(2+) mobilization induced by microbe/pathogen-associated molecular patterns is postulated to play a pivotal role in innate immunity in plants, the molecular links between Ca(2+) and downstream defense responses still remain largely unknown. Calcineurin B-like proteins (CBLs) act as Ca(2+) sensors to activate specific protein(More)
Much of the nitrogen in leaves is distributed to chloroplasts, mainly in photosynthetic proteins. During leaf senescence, chloroplastic proteins, including Rubisco, are rapidly degraded, and the released nitrogen is remobilized and reused in newly developing tissues. Autophagy facilitates the degradation of intracellular components for nutrient recycling in(More)
Autophagy, a major catabolic pathway in eukaryotic cells, is essential in development, maintenance of cellular homeostasis, immunity and programmed cell death (PCD) in multicellular organisms. In plant cells, autophagy plays roles in recycling of proteins and metabolites including lipids, and is involved in many physiological processes such as abiotic and(More)
Autophagy has been shown to play essential roles in the growth, development and survival of eukaryotic cells. However, simple methods for quantification and visualization of autophagic flux remain to be developed in living plant cells. Here, we analyzed the autophagic flux in transgenic tobacco BY-2 cell lines expressing fluorescence-tagged NtATG8a as a(More)
To gain insight into the cellular functions of the mid1-complementing activity (MCA) family proteins, encoding putative Ca2+-permeable mechanosensitive channels, we isolated two MCA homologs of tobacco (Nicotiana tabacum) BY-2 cells, named NtMCA1 and NtMCA2. NtMCA1 and NtMCA2 partially complemented the lethality and Ca2+ uptake defects of yeast mutants(More)
In flowering plants, the tapetum, the innermost layer of the anther, provides both nutrient and lipid components to developing microspores, pollen grains, and the pollen coat. Though the programmed cell death of the tapetum is one of the most critical and sensitive steps for fertility and is affected by various environmental stresses, its regulatory(More)
Reactive oxygen species (ROS) produced by NADPH oxidases play critical roles in plant environmental responses. Arabidopsis thaliana NADPH oxidase AtRbohF-mediated ROS-production is involved in abiotic stress responses. Because overproduction of ROS is highly toxic to cells, the activity of AtRbohF needs to be tightly regulated in response to diverse(More)
Pharmacological evidence suggests that anion channel-mediated plasma membrane anion effluxes are crucial in early defense signaling to induce immune responses and hypersensitive cell death in plants. However, their molecular bases and regulation remain largely unknown. We overexpressed Arabidopsis SLAC1, an S-type anion channel involved in stomatal closure,(More)
Autophagy has recently been shown to be required for postmeiotic anther development including anther dehiscence, programmed cell death-mediated degradation of the tapetum and pollen maturation in rice. Several phytohormones are known to play essential roles during male reproductive development including pollen maturation. However, the relationship between(More)
  • 1