Shigeo M. Tanaka

Learn More
When bone is loaded, substrate strain is generated by the external force and this strain induces fluid flow that creates fluid shear stress on bone cells. Our current understanding of load-driven gene regulation of osteoblasts is based primarily on in vitro studies on planer two-dimensional tissue culture substrates. However, differences between a flat(More)
BACKGROUND Bone alters its architecture and mass in response to the mechanical environment, and thus varying loading modalities have been examined for studying load-driven bone formation. The current study aimed to evaluate the anabolic effects of knee loading on diaphyseal cortical bone in the femur. METHODS Using a custom-made piezoelectric loader,(More)
The effect of mechanical stimulation on osteogenesis remains controversial, especially with respect to the loading frequency that maximizes osteogenesis. Mechanical stimulation at an optimized frequency may be beneficial for the bone tissue regeneration to promote osteoblastic calcification. The objective of this study was to investigate the(More)
  • 1