Learn More
BACKGROUND Bioethanol isolated from lignocellulosic biomass represents one of the most promising renewable and carbon neutral alternative liquid fuel sources. Enzymatic saccharification using cellulase has proven to be a useful method in the production of bioethanol. The filamentous fungi Acremonium cellulolyticus and Trichoderma reesei are known to be(More)
Enzymatic hydrolysis is one of the most important processes in bioethanol production from lignocellulosic biomass. Acremonium cellulolyticus is a filamentous fungus with high cellulase production but productivity of hemicellulase, especially β-xylosidase, is lower than other filamentous fungi. We identified 2.4 Kb β-xylosidase gene in the A. cellulolyticus(More)
BACKGROUND Lignocellulosic biomass such as wood is an attractive material for fuel ethanol production. Pretreatment technologies that increase the digestibility of cellulose and hemicellulose in the lignocellulosic biomass have a major influence on the cost of the subsequent enzymatic hydrolysis and ethanol fermentation processes. Pretreatments without(More)
BACKGROUND Enzymatic hydrolysis of pretreated lignocellulosic biomass is an essential process for the production of fermentable sugars for industrial use. A better understanding of fungal cellulase systems will provide clues for maximizing the hydrolysis of target biomass. Talaromyces cellulolyticus is a promising fungus for cellulase production and(More)
trans-4-Hydroxy-l-proline (T4LHyp) and trans-3-hydroxy-l-proline (T3LHyp) occur mainly in collagen. A few bacteria can convert T4LHyp to α-ketoglutarate, and we previously revealed a hypothetical pathway consisting of four enzymes at the molecular level (J Biol Chem (2007) 282, 6685-6695; J Biol Chem (2012) 287, 32674-32688). Here, we first found that(More)
The gene expression of a cellulase-producing fungus, Acremonium cellulolyticus, was investigated after culturing with three different carbon sources: glycerol, lactose, and Solka-Floc powdered cellulose (SF). High-coverage gene expression profiling (HiCEP) analysis, a method requiring no prior sequence knowledge, was used to screen genes upregulated at the(More)
Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) is a promising fungus for cellulase production. Here, we present the draft genome sequence of T. cellulolyticus strain Y-94. The genome is 36.4 Mbp long and contains genes for several enzymes involved in the degradation of lignocellulosic biomass, including cellulases, hemicellulases,(More)
The industrial Saccharomyces cerevisiae IR-2 is a promising host strain to genetically engineer xylose-utilizing yeasts for ethanol fermentation from lignocellulosic hydrolysates. Two IR-2-based haploid strains were selected based upon the rate of xylulose fermentation, and hybrids were obtained by mating recombinant haploid strains harboring heterogeneous(More)
In deep-sea hydrothermal environments, most invertebrates associate with dense populations of symbiotic microorganisms in order to obtain nutrition. The molecular interactions between deep-sea animals and environmental microbes, including their symbionts, have not yet been elucidated in detail. Hemagglutinins/lectins, which are carbohydrate-binding(More)
In the bioethanol production process, high solid saccharification and glucose/xylose co-fermentation are important technologies for obtaining increased ethanol concentrations; however, bench-scale studies using combinations of these methods are limited. In this study, we hydrolyzed high solid concentration of milled eucalyptus using commercial enzymes and(More)