Shigeaki Kato

Learn More
The interactions between fibroblast growth factors (FGF) and their receptors have important roles in mediating mesenchymal-epithelial cell interactions during embryogenesis. In particular, Fgf10 is predicted to function as a regulator of brain, lung and limb development on the basis of its spatiotemporal expression pattern in the developing embryo. To(More)
MicroRNAs (miRNAs) have emerged as key post-transcriptional regulators of gene expression, involved in diverse physiological and pathological processes. Although miRNAs can function as both tumour suppressors and oncogenes in tumour development, a widespread downregulation of miRNAs is commonly observed in human cancers and promotes cellular transformation(More)
Environmental contaminants affect a wide variety of biological events in many species. Dioxins are typical environmental contaminants that exert adverse oestrogen-related effects. Although their anti-oestrogenic actions are well described, dioxins can also induce endometriosis and oestrogen-dependent tumours, implying possible oestrogenic effects. However,(More)
The mouse develops five pairs of mammary glands that arise during mid-gestation from five pairs of placodes of ectodermal origin. We have investigated the molecular mechanisms of mammary placode development using Lef1 as a marker for the epithelial component of the placode, and mice deficient for Fgf10 or Fgfr2b, both of which fail to develop normal mammary(More)
We identify a new mammalian cohesin subunit, RAD21-like protein (RAD21L), with sequence similarity to RAD21 and REC8. RAD21L localizes along axial elements in early meiotic prophase, in a manner that is spatiotemporally different to either REC8 or RAD21. Remarkably, RAD21L and REC8 have symmetrical, mutually exclusive localization on the not-yet-synapsed(More)
Steroid hormones and their cognate nuclear receptors exert a wide spectrum of biological actions through regulation of transcriptional and posttranscriptional processes. However, the underlying molecular mechanism by which steroid hormones control posttranscriptional processes is largely unknown. We now report that estrogen receptor alpha (ERalpha) inhibits(More)
Mouse incisors are regenerative tissues that grow continuously throughout life. The renewal of dental epithelium-producing enamel matrix and/or induction of dentin formation by mesenchymal cells is performed by stem cells that reside in cervical loop of the incisor apex. However, little is known about the mechanisms of stem cell compartment formation.(More)
1α,25-Dihydroxy vitamin D3[1α,25(OH)2D3] an active form of vitamin D, has roles in many biological phenomena such as calcium homeostasis and bone formation1–3, which are thought to be mediated by the 1α,25(OH)2D3 receptor (VDR), a member of the nuclear hormone receptor superfamily4–6. However, the molecular basis for the actions of 1α,25(OH)2D3 in bone(More)
Fat-soluble ligands, including sex steroid hormones and environmental toxins, activate ligand-dependent DNA-sequence-specific transcriptional factors that transduce signals through target-gene-selective transcriptional regulation. However, the mechanisms of cellular perception of fat-soluble ligand signals through other target-selective systems remain(More)
Intestinal cancer is one of the most common human cancers. Aberrant activation of the canonical Wnt signaling cascade, for example, caused by adenomatous polyposis coli (APC) gene mutations, leads to increased stabilization and accumulation of beta-catenin, resulting in initiation of intestinal carcinogenesis. The aryl hydrocarbon receptor (AhR) has dual(More)