Shidong Jiang

Learn More
We present a fast algorithm for the evaluation of the exact nonreflecting boundary conditions for the SchrSdinger equation in one dimension. The exact nonrefleeting boundary condition contains a nonloeal term which is a convolution integral in time, with a kernel proportional to 1/v~. The key observation is that this integral can be split into two parts: a(More)
A detailed analysis is presented of all pseudo-differential operators of orders up to 2 encountered in classical potential theory in two dimensions. Each of the operators under investigation turns out to be a sum of one or more of standard operators (second derivative, derivative of the Hilbert transform, etc.), and an integral operator with smooth kernel.(More)
A second kind integral equation formulation is presented for the Dirichlet problem for the Laplace equation in two dimensions, with the boundary conditions specified on a collection of open curves. The performance of the obtained apparatus is illustrated with several numerical examples. The formulation is a simplification of the equation previously(More)
We present a fast and accurate algorithm for the evaluation of nonlocal (long-range) Coulomb and dipole-dipole interactions in free space. The governing potential is simply the convolution of an interaction kernel U (x) and a density function ρ(x) = |ψ(x)| 2 for some complex-valued wave function ψ(x), permitting the formal use of Fourier methods. These are(More)
We present a fast algorithm for the evaluation of exact nonreflecting boundary conditions for the time-dependent Schrödinger equation in two dimensions on the unit circle. After separation of variables, the exact outgoing condition for each Fourier mode contains a nonlocal term which is a convolution integral in time. The kernel for that convolution is the(More)
The coarse-grained molecular dynamics (MD) or Brownian dynamics (BD) simulation is a particle-based approach that has been applied to a wide range of biological problems that involve interactions with surrounding fluid molecules or the so-called hydrodynamic interactions (HIs). In this paper, an efficient algorithm is proposed to simulate the motion of a(More)