Learn More
In this paper, we present the implementation and silicon measurements results of a 64bit processor fabricated in 0.18µm technology. The processor employs a delay-error detection and correction scheme called Razor to eliminate voltage safety margins and scale voltage 120mV below the first failure point. It achieves 44% energy savings over the worst case(More)
—Traditional adaptive methods that compensate for PVT variations need safety margins and cannot respond to rapid environmental changes. In this paper, we present a design (RazorII) which implements a flip-flop with in situ detection and architectural correction of variation-induced delay errors. RazorII processor through radiation experiments.
—Razor is a hybrid technique for dynamic detection and correction of timing errors. A combination of error detecting circuits and micro-architectural recovery mechanisms creates a system that is robust in the face of timing errors, and can be tuned to an efficient operating point by dynamically eliminating unused timing margins. Savings from margin(More)
— In this paper, we present a novel circuit-level timing error mitigation technique, which aims to increase energy-efficiency of digital signal processing datapaths without loss of robustness. Timing errors are detected using razor flip-flops on critical-paths, and the error-rate feedback is used to control a dynamic voltage scaling control loop. In place(More)
The quadratic relationship between voltage and energy has madedynamic voltage scaling (DVS) one of the most powerful techniquesto reduce system power demands. Recently, techniques such as RazorDVS, voltage overscaling, and Intelligent Energy Management haveemerged as approaches to further reduce voltage by eliminatingcostly voltage margins inserted into(More)
Hardware accelerators are common in embedded systems that have high performance requirements but must still operate within stringent energy constraints. To facilitate short time-to-market and reduced non-recurring engineering costs, automatic systems that can rapidly generate hardware bearing both power and performance in mind are extremely attractive. This(More)
Architectural simulation has achieved a prominent role in the system design cycle by providing designers the ability to quickly examine a wide variety of design choices. However, the recent trend in system design toward architectures that react to circuit-level phenomena has outstripped the capabilities of traditional cycle-based architectural simulators.(More)