Learn More
Most biological processes are mediated by interactions between proteins and their interacting partners including proteins, nucleic acids and small molecules. This work establishes a method called PINUP for binding site prediction of monomeric proteins. With only two weight parameters to optimize, PINUP produces not only 42.2% coverage of actual interfaces(More)
Accurate prediction of antigenic epitopes is important for immunologic research and medical applications, but it is still an open problem in bioinformatics. The case for discontinuous epitopes is even worse - currently there are only a few discontinuous epitope prediction servers available, though discontinuous peptides constitute the majority of all B-cell(More)
Prediction of antigenic epitopes on protein surfaces is important for vaccine design. Most existing epitope prediction methods focus on protein sequences to predict continuous epitopes linear in sequence. Only a few structure-based epitope prediction algorithms are available and they have not yet shown satisfying performance. We present a new antigen(More)
Modeling side-chain conformations on a fixed protein backbone has a wide application in structure prediction and molecular design. Each effort in this field requires decisions about a rotamer set, scoring function, and search strategy. We have developed a new and simple scoring function, which operates on side-chain rotamers and consists of the following(More)
Identifying protein surface regions preferentially recognizable by antibodies (antigenic epitopes) is at the heart of new immuno-diagnostic reagent discovery and vaccine design, and computational methods for antigenic epitope prediction provide crucial means to serve this purpose. Many linear B-cell epitope prediction methods were developed, such as(More)
Recognizing the structural similarity without significant sequence identity (called fold recognition) is the key for bridging the gap between the number of known protein sequences and the number of structures solved. Previously, we developed a fold-recognition method called SP(3) which combines sequence-derived sequence profiles, secondary-structure(More)
Accurate prediction of B-cell antigenic epitopes is important for immunologic research and medical applications, but compared with other bioinformatic problems, antigenic epitope prediction is more challenging because of the extreme variability of antigenic epitopes, where the paratope on the antibody binds specifically to a given epitope with high(More)
The identification of near native protein-protein complexes among a set of decoys remains highly challenging. A strategy for improving the success rate of near native detection is to enrich near native docking decoys in a small number of top ranked decoys. Recently, we found that a combination of three scoring functions (energy, conservation, and interface(More)
In the second antibody modeling assessment, we used a semiautomated template-based structure modeling approach for 11 blinded antibody variable region (Fv) targets. The structural modeling method involved several steps, including template selection for framework and canonical structures of complementary determining regions (CDRs), homology modeling, energy(More)
We describe the development of new force fields for protein side chain modeling called optimized side chain atomic energy (OSCAR). The distance-dependent energy functions (OSCAR-d) and side-chain dihedral angle potential energy functions were represented as power and Fourier series, respectively. The resulting 802 adjustable parameters were optimized by(More)