Learn More
Benefiting from its strong oxidizing properties, the singlet oxygen has garnered serious attentions in physical, chemical, as well as biological studies. However, the photosensitizers for the generation of singlet oxygen bear in low quantum yields, lack of long wavelength absorption band, poor biocompatibility, undegradable in living tissues, and so on.(More)
Cognitive Radio (CR) is considered as an effective technology for alleviating the spectrum shortage problem by enabling secondary users to utilize vacant spectrum allocated to a primary user (PU). IEEE 802.22 which is the first standard based on CR is developed to increase the efficiency of TV bands. However the physical layer security of IEEE 802.22 has(More)
Experimental data reveal that the incorporation of carbonyl groups into polymer matrix can significantly enhance singlet oxygen ((1) O2 ) generation and suppress production of other reactive oxygen species. Excitonic processes investigated by phosphorescence spectroscopy reveal enhanced triplet-exciton generation in the modified g-C3 N4 , which facilitate(More)
The electrocatalytic activity of transition-metal-based compounds is strongly related to the spin states of metal atoms. However, the ways for regulation of spin states of catalysts are still limited, and the underlying relationship between the spin states and catalytic activities remains unclear. Herein, for the first time, by taking NiII -based compounds(More)
Understanding the photoexcitation processes in semiconductors is critical for the design of advanced photocatalytic materials. Nevertheless, traditional viewpoints focus on photogenerated free charge carriers, which are somehow invalid once the many-body effects are taken into account, especially for polymeric photocatalysts. Here we systematically(More)
Excitonic effects, arising from the Coulomb interactions between photogenerated electrons and holes, dominate the optical excitation properties of semiconductors, whereas their influences on photocatalytic processes have seldom been discussed. In view of the competitive generation of excitons and hot carriers, exciton dissociation is proposed as an(More)
Understanding the photoexcitation processes in semiconductors is critical for the design of advanced photocatalytic materials. Nevertheless, traditional viewpoints focus on photogenerated free charge carriers, which are somehow invalid once the many-body effects are taken into account, especially for polymeric photocatalysts. Here we systematically(More)
Numerous efforts have been devoted to understanding the excitation processes of photocatalysts, whereas the potential Coulomb interactions between photogenerated electrons and holes have been long ignored. Once these interactions are considered, excitonic effects will arise that undoubtedly influence the sunlight-driven catalytic processes. Herein, by(More)
  • 1