Shichen Wang

Learn More
The Arabidopsis ethylene-responsive element-binding factor (AtERF) family of transcription factors has approximately 120 members, all of which possess a highly conserved ERF domain. AtERF1, AtERF4, AtEBP and CBF1 are members from different phylogenetic subgroups within the family. Electrophoretic mobility shift assay analyses revealed that the ERF domains(More)
Arabidopsis ethylene responsive element binding factors (AtERFs) form a transcription factor super family. While the functions of most AtERFs are unknown, a number of AtERFs appear to be involved in regulation of stress-related genes through their DNA binding domains (DBD), namely ERF domains, which recognize a consensus motif GCC-box at the regulatory(More)
Identification of downstream target genes of stress-relating transcription factors (TFs) is desirable in understanding cellular responses to various environmental stimuli. However, this has long been a difficult work for both experimental and computational practices. In this research, we presented a novel computational strategy which combined the analysis(More)
CYP82E4, a cytochrome P450 monooxygenase, has nicotine N-demethylase (NND) activity, which mediates the bioconversion of nicotine into nornicotine in senescing tobacco leaves. Nornicotine is a precursor of the carcinogen, tobacco-specific nitrosamine. CYP82E3 is an ortholog of CYP82E4 with 95% sequence identity, but it lacks NND activity. A recent(More)
Extraction of plant proteins using typical extraction buffers leaves insoluble debris that cannot be investigated by conventional 2-DE technologies. In this paper, we present a scalable, off-line procedure for extraction of Arabidopsis thaliana homogenates that can be used in combination with both in-gel digestion and mass spectrometry. Based on sequential(More)
  • 1