Shiao-Shing Chen

Learn More
A fluidized zero valent iron (ZVI) reactor is examined for nitrate reduction. Using the system, the pH of solution can be maintained at optimal conditions for rapid nitrate reduction. For hydraulic retention times of 15 min, the nitrate reduction efficiency increases with increasing ZVI dosage. At ZVI loadings of 33 gl-1, results indicate that the nitrate(More)
Guaiacol, catechol, m-cresol are common phenolic compounds presented in various industrial effluents but difficult to be removed by conventional wastewater treatment schemes. To elucidate mechanisms of enhanced membrane removal by laccase polymerization, different MF and UF membranes were employed in a cross-flow module for phenol concentration of 5mM. With(More)
A novel approach was designed to simultaneously apply low energy sludge dewatering and nutrient removal for activated sludge using forward osmosis (FO). In this study, the municipal wastewater sludge was spiked with different nutrient concentrations to evaluate FO dewatering performance. The results showed that sludge concentration reached 21,511 and(More)
For the first time, an innovative concept of combining sponge-based moving bed (SMB) and an osmotic membrane bioreactor (OsMBR), known as the SMB-OsMBR hybrid system, were investigated using Triton X-114 surfactant coupled with MgCl2 salt as the draw solution. Compared to traditional activated sludge OsMBR, the SMB-OsMBR system was able to remove more(More)
Protein misfolding and aggregation cause a large number of neurodegenerative diseases in humans due to (i) gain of function as observed in Alzheimer's disease, Huntington's disease, Parkinson's disease, and Prion's disease or (ii) loss of function as observed in cystic fibrosis and alpha1-antitrypsin deficiency. These misfolded proteins could either lead to(More)
Fluidized zero valent iron (ZVI) process was conducted to reduce hexavalent chromium (chromate, CrO(4)(2-)) to trivalent chromium (Cr(3+)) from electroplating wastewater due to the following reasons: (1) Extremely low pH (1-2) for the electroplating wastewater favoring the ZVI reaction. (2) The ferric ion, produced from the reaction of Cr(VI) and ZVI, can(More)
A designed two-stage electrodialysis system is proposed to concentrate and purify chromate from a low pH electroplating wastewater using monovalent selective electrodialysis membranes. With low pH of the raw water (pH 2.2) in the first stage, chromate was presented as HCrO(4)(-) and monovalent ions (HCrO(4)(-), NH(2)SO(3)(-), Na(+) and Cl(-)) were able to(More)
Waste iron was used to treat high concentration chromate (534 mg/L as Cr) from electroplating wastewater by plug flow reactor (PFR) due to the following reasons: (1) two wastes are treated simultaneously, (2) low pH of the electroplating wastewater ( approximately 2) benefits the reaction between these two wastes, (3) effluent pH is elevated in the PFR,(More)
For the first time, a high charge of phosphate was used as the draw solute in a forward osmosis-membrane distillation (FO-MD) hybrid system for concentrating high-nutrient sludge. A high water flux (12.5L/m(2)h) and a low reverse salt flux (0.84g/m(2)) were simultaneously achieved at pH9 by using 0.1M Na3PO4 as the draw solute and deionized water as the(More)
This study aims to develop a new osmotic membrane bioreactor by combining a moving bed biofilm reactor (MBBR) with forward osmosis membrane bioreactor (FOMBR) to treat wastewater. Ethylenediaminetetraacetic acid disodium salt coupled with polyethylene glycol tert-octylphenyl ether was used as an innovative draw solution in this membrane hybrid system(More)