Learn More
OBJECTIVE The glutathione (GSH)/glutaredoxin (Grx) system regulates activities of many redox sensitive enzymes. This system has been shown to protect cells from hydrogen peroxide-induced apoptosis by regulating the redox state of Akt. Grx can be regulated by redox state; the oxidized Grx is selectively recycled to the reduced form by GSH. Flow can maintain(More)
OBJECTIVE Glucose 6-phosphate dehydrogenase (G6PD) maintains cellular NADPH levels, which are essential for cellular functions, such as vascular endothelial growth factor (VEGF)-induced angiogenesis. The molecular mechanisms regulating G6PD in angiogenesis are not fully understood. Because tyrosine phosphorylation is a key regulatory pathway for(More)
RATIONALE G protein-coupled receptor kinase 2 (GRK2) is abundantly expressed in the heart, and its expression and activity are increased in injured or stressed myocardium. This upregulation has been shown to be pathological. GRK2 can promote cell death in ischemic myocytes, and its inhibition by a peptide comprising the last 194 amino acids of GRK2 (known(More)
  • Shi Pan
  • 2009
The endothelium lining the inner surface of blood vessels of the cardiovascular system is constantly exposed to hemodynamic shear stress. The interaction between endothelial cells and hemodynamic shear stress has critical implications for atherosclerosis. Regions of arterial narrowing, curvatures, and bifurcations are especially susceptible to(More)
Blood flow modulates endothelial cell (EC) functions through specific signaling events. Previous data show that flow stimulates SHP2 translocation to cell membranes and binding to phosphotyrosine proteins. Flow-induced ERK1/2 phosphorylation depends on SHP2 phosphatase activity and SHP2 binding to phospho-PECAM1 (platelet endothelial adhesion molecule 1),(More)
Regions in the vasculature that are exposed to steady laminar blood flow are protected from atherosclerosis as compared with regions where flow is disturbed. We found that flow decreased TNF-mediated VCAM1 expression by inhibiting JNK and p38. JNK inhibition correlated with inhibition of apoptosis signal-regulating kinase 1 (ASK1), a JNK and p38 activator.(More)
—Caspase-3 cleavage and activation are known to play central roles in apoptosis. However, the mechanisms that regulate caspase-3 cleavage remain elusive. Glutaredoxin (Grx) is a ubiquitous redox molecule that is unique in its ability to regulate S-glutathiolation (glutathiolation) of proteins. Here we show the essential role of Grx in caspase-3 cleavage via(More)
Caspase-3 cleavage and activation are known to play central roles in apoptosis. However, the mechanisms that regulate caspase-3 cleavage remain elusive. Glutaredoxin (Grx) is a ubiquitous redox molecule that is unique in its ability to regulate S-glutathiolation (glutathiolation) of proteins. Here we show the essential role of Grx in caspase-3 cleavage via(More)
BACKGROUND Oxidative stress, generated by excessive reactive oxygen species, promotes cardiovascular disease. Cyclophilin A (CyPA) is a 20-kDa chaperone protein secreted from vascular smooth muscle cells (VSMCs) in response to reactive oxygen species that stimulates VSMC proliferation and inflammatory cell migration in vitro; however, the role CyPA plays in(More)