Shi-Hwei Liu

Learn More
BACKGROUND Members of a protein family often have highly conserved sequences; most of these sequences carry identical biological functions and possess similar three-dimensional (3-D) structures. However, enzymes with high sequence identity may acquire differential functions other than the common catalytic ability. It is probable that each of their variable(More)
BACKGROUND Rhizopus oryzae glucoamylase (RoGA) consists of three domains: an amino (N)-terminal raw starch-binding domain (SBD), a glycosylated linker domain, and a carboxy (C)-terminal catalytic domain. The 36-amino-acid linker region (residues 132-167) connects the two functional domains, but its structural and functional roles are unclear. RESULTS To(More)
Human ribonuclease A (RNaseA) superfamily consists of eight RNases with high similarity in which RNase2 and RNase3 share 76.7% identity. The evolutionary variation of RNases results in differential structures and functions of the enzymes. To distinguish the characteristics of each RNase, we developed reinforced merging algorithms (RMA) to rapidly identify(More)
  • 1