Sherrie Kaye

Learn More
The five ARIES designs, which correspond to five different tokamak operating modes, are reviewed and compared. Physics figures of merit are introduced that quantify the major parameters of a tokamak design in a physics operating space. The five operating modes are compared to one another and to the existing tokamak data base in terms of these physics(More)
One of the goals of the National Spherical Torus Experiment (NSTX) is to investigate the physics of global mode stabilization in a low aspect ratio device. NSTX has a major radius R0 = 0.86 m, a midplane half-width of 0.7 m, and an on-axis vacuum toroidal field B0 0.6 T and has reached a plasma current Ip = 1.5 MA. Experiments have established the(More)
The impact of toroidal rotation, energetic ions, and drift-kinetic effects on the tokamak ideal wall mode stability limit is considered theoretically and compared to experiment for the first time. It is shown that high toroidal rotation can be an important destabilizing mechanism primarily through the angular velocity shear; non-Maxwellian fast ions can(More)
The plasma material interface in Demo will be more challenging than that in ITER, due to requirements for approximately four times higher heat flux from the plasma and approximately five times higher average duty factor. The scientific and technological solutions employed in ITER may not extrapolate to Demo. The key questions to be resolved for Demo and the(More)
Neutral-beam-driven compressional Alfvén eigenmodes at frequencies below the ion cyclotron frequency have been observed and identified for the first time in the National Spherical Torus Experiment. The modes are observed as a broad spectrum of nearly equally spaced peaks in the frequency range from approximately 0.2omega(ci) to approximately 1.2omega(ci).(More)
We report the observation of a correlation between shear Alfvén eigenmode activity and electron transport in plasma regimes where the electron temperature gradient is flat, and thus the drive for temperature gradient microinstabilities is absent. Plasmas having rapid central electron transport show intense, broadband global Alfvén eigenmode (GAE) activity(More)
A significant inward flux of toroidal momentum is found in global gyrokinetic simulations of ion temperature gradient turbulence, leading to core plasma rotation spin-up. The underlying mechanism is identified to be the generation of residual stress due to the k parallel symmetry breaking induced by global quasistationary zonal flow shear. Simulations also(More)
Simultaneous bursts of energetic particle mode (EPM) and toroidicity-induced Alfvén eigenmode (TAE) activity that correlate with significant fast-ion loss are observed in beam heated plasmas. Three-wave interactions between these modes are conclusively identified, indicating fixed phase relationships. This nonlinear coupling concentrates the energy of the(More)
This Letter presents nonlinear gyrokinetic simulations of microtearing mode turbulence. The simulations include collisional and electromagnetic effects and use experimental parameters from a high-β discharge in the National Spherical Torus Experiment. The predicted electron thermal transport is comparable to that given by experimental analysis, and it is(More)
Lithium wall coatings have been shown to reduce recycling, improve energy confinement, and suppress edge localized modes in the National Spherical Torus Experiment. Here, we show that these effects depend continuously on the amount of predischarge lithium evaporation. We observed a nearly monotonic reduction in recycling, decrease in electron transport, and(More)