Sheridan J S Carrington

Learn More
This letter describes the further exploration of two series of M(1) allosteric agonists, TBPB and VU0357017, previously reported from our lab. Within the TPBP scaffold, either electronic or steric perturbations to the central piperidine ring led to a loss of selective M(1) allosteric agonism and afforded pan-mAChR antagonism, which was demonstrated to be(More)
The analogue of glutathione disulphide (GSSG) in which the disulphide bridge of GSSG is replaced by -CH2-S- was synthesised from L-cystathionine using t-butoxycarbonyl and t-butyl ester protection with triethylsilane-promoted deprotection. This analogue (GCSG) was found to be a linear, competitive inhibitor of yeast glutathione reductase (Ki value 981(More)
Syntheses are described for and structure:activity studies undertaken of the anti-tumour activity of (2-crotonyloxymethyl-(4R,5R,6R)-4,5,6-trihydroxycyclohex-2-+ ++enone) (1) and its analogues 1-crotonyloxymethyl-(3R,4S,5R)-3,4,5-trihydroxycyclohex-1-en e (3), 1-crotonyloxymethyl-(3R,4S,5S)-3,4,5-trihydroxycyclohexene (4) and(More)
Herein we report the discovery and SAR of a novel metabotropic glutamate receptor 3 (mGlu(3)) NAM probe (ML289) with 15-fold selectivity versus mGlu(2). The mGlu(3) NAM was discovered via a 'molecular switch' from a closely related, potent mGlu(5) positive allosteric modulator (PAM), VU0092273. This NAM (VU0463597, ML289) displays an IC(50) value of 0.66 μM(More)
1. Yeast glyoxalase I was inactivated by N-acetylimidazole and tetranitromethane, the latter process following pK app 7.31 and irreversibly producing a protein with a spectrum typical of 3-nitrotyrosine. 2. For yeast glyoxalase I, amino-acid analysis and protection studies with S-(p-bromobenzyl)glutathione, a competitive inhibitor, indicated two classes of(More)
  • 1