Learn More
Current understanding of microRNA (miRNA) biology is limited, and antisense oligonucleotide (ASO) inhibition of miRNAs is a powerful technique for their functionalization. To uncover the role of the liver-specific miR-122 in the adult liver, we inhibited it in mice with a 2'-O-methoxyethyl phosphorothioate ASO. miR-122 inhibition in normal mice resulted in(More)
To investigate the possible role of eukaryotic initiation factor 4E-binding protein-2 (4E-BP2) in metabolism and energy homeostasis, high-fat diet-induced obese mice were treated with a 4E-BP2-specific antisense oligonucleotide (ASO) or a control 4E-BP2 ASO at a dose of 25 mg/kg body wt or with saline twice a week for 6 wk. 4E-BP2 ASO treatment reduced(More)
Triantennary N-acetyl galactosamine (GalNAc, GN3: ), a high-affinity ligand for the hepatocyte-specific asialoglycoprotein receptor (ASGPR), enhances the potency of second-generation gapmer antisense oligonucleotides (ASOs) 6-10-fold in mouse liver. When combined with next-generation ASO designs comprised of short S-cEt (S-2'-O-Et-2',4'-bridged nucleic(More)
Liver regeneration after partial hepatectomy (PHx) is a complex and well-orchestrated biological process in which synchronized cell proliferation is induced in response to the loss of liver mass. To define long noncoding RNAs (lncRNAs) that participate in the regulation of liver regeneration, we performed microarray analysis and identified more than 400(More)
Alpha-1 antitrypsin (AAT) is a serum protease inhibitor that belongs to the serpin superfamily. Mutations in AAT are associated with α-1 antitrypsin deficiency (AATD), a rare genetic disease with two distinct manifestations: AATD lung disease and AATD liver disease. AATD lung disease is caused by loss-of-function of AAT and can be treated with(More)
  • 1