Learn More
In various computer vision applications, often we need to convert an image in one style into another style for better visualization, interpretation and recognition; for examples, up-convert a low resolution image to a high resolution one, and convert a face sketch into a photo for matching, etc. A semi-coupled dictionary learning (SCDL) model is proposed in(More)
Regularized linear representation learning has led to interesting results in image classification, while how the object should be represented is a critical issue to be investigated. Considering the fact that the different features in a sample should contribute differently to the pattern representation and classification, in this paper we present a novel(More)
In this paper we are interested in exploiting geographic priors to help outdoor scene understanding. Towards this goal we propose a holistic approach that reasons jointly about 3D object detection, pose estimation, semantic segmentation as well as depth reconstruction from a single image. Our approach takes advantage of large-scale crowd-sourced maps to(More)
In this paper we propose a novel approach to localization in very large indoor spaces (i.e., 200+ store shopping malls) that takes a single image and a floor plan of the environment as input. We formulate the localization problem as inference in a Markov random field, which jointly reasons about text detection (localizing shop's names in the image with(More)
In recent years, contextual models that exploit maps have been shown to be very effective for many recognition and localization tasks. In this paper we propose to exploit aerial images in order to enhance freely available world maps. Towards this goal, we make use of OpenStreetMap and formulate the problem as the one of inference in a Markov random field(More)
In this paper we present a robust, efficient and affordable approach to self-localization which does not require neither GPS nor knowledge about the appearance of the world. Towards this goal, we utilize freely available carto-graphic maps and derive a probabilistic model that exploits semantic cues in the form of sun direction, presence of an intersection,(More)
In this paper, we prove that every multivariate polynomial with even degree can be decomposed into a sum of convex and concave polynomials. Motivated by this property, we exploit the concave-convex procedure to perform inference on continuous Markov random fields with polynomial potentials. In particular, we show that the concave-convex decomposition of(More)