Shengxiang Yang

Learn More
In the real world, many optimization problems are dynamic. This requires an optimization algorithm to not only find the global optimal solution under a specific environment but also to track the trajectory of the changing optima over dynamic environments. To address this requirement, this paper investigates a clustering particle swarm optimizer (PSO) for(More)
Balancing convergence and diversity plays a key role in evolutionary multiobjective optimization (EMO). Most current EMO algorithms perform well on problems with two or three objectives, but encounter difficulties in their scalability to many-objective optimization. This paper proposes a Gridbased Evolutionary Algorithm (GrEA) to solve many-objective(More)
In recent years, interest in studying evolutionary algorithms (EAs) for dynamic optimization problems (DOPs) has grown due to its importance in real-world applications. Several approaches, such as the memory and multiple population schemes, have been developed for EAs to address dynamic problems. This paper investigates the application of the memory scheme(More)
Optimization in dynamic environments is a challenging but important task since many real-world optimization problems are changing over time. Evolutionary computation and swarm intelligence are good tools to address optimization problems in dynamic environments due to their inspiration from natural self-organized systems and biological evolution, which have(More)
In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt(More)
Evolutionary algorithms have been widely used for stationary optimization problems. However, the environments of real world problems are often dynamic. This seriously challenges traditional evolutionary algorithms. In this paper, the application of PopulationBased Incremental Learning (PBIL) algorithms, a class of evolutionary algorithms, for dynamic(More)
It is commonly accepted that Pareto-based evolutionary multiobjective optimization (EMO) algorithms encounter difficulties in dealing with many-objective problems. In these algorithms, the ineffectiveness of the Pareto dominance relation for a high-dimensional space leads diversity maintenance mechanisms to play the leading role during the evolutionary(More)
In recent years dynamic optimization problems have attracted a growing interest from the community of genetic algorithms with several approaches developed to address these problems, of which the memory scheme is a major one. In this paper an associative memory scheme is proposed for genetic algorithms to enhance their performance in dynamic environments. In(More)