Learn More
The fabrication and surface modification of a porous cell scaffold are very important in tissue engineering. Of most concern are high-density cell seeding, nutrient and oxygen supply, and cell affinity. In the present study, poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) (70/30) cell scaffolds with different pore structures were fabricated. An(More)
We developed a natural, acellular, 3-D interconnected porous scaffold derived from cartilage extracellular matrix (ECM). Human cartilage was physically shattered, then decellularized sequentially with use of hypotonic buffer, TritonX-100, and a nuclease solution and made into a suspension. The scaffold was fabricated by simple freeze-drying and(More)
The impact of the surface topography of polylactone-type polymer on cell adhesion was to be concerned because the micro-scale texture of a surface can provide a significant effect on the adhesion behavior of cells on the surface. Especially for the application of tissue engineering scaffold, the pore size could have an influence on cell in-growth and(More)
The purpose of this study is to investigate the enzymatic degradation behaviors of porous poly(lactide-co-glycolide) (PLGA) foams in the presence of trypsin, in comparison with their hydrolytic degradation. To inspect the effect of trypsin on the degradation of PLGA, both the hydrolytic and enzymatic degradation of non-porous PLGA samples were also(More)
In this study, nerve guides composed of poly(D,L-lactide) (PDLLA) were fabricated and used in the repair of transected sciatic nerves (15-mm gaps) of rats. Nerve guides with a two-ply structure (inner layer dense, outer layer microporous) were prepared by controlling the solvent evaporation rate. Then basic fibroblast growth factor (bFGF) was embedded in(More)
Surface characteristics greatly influence attachment and growth of cells on biomaterials. Although polylactone-type biodegradable polymers have been widely used as scaffold materials for tissue engineering, lack of cell recognition sites, poor hydrophilicity and low surface energy lead to a bad cell affinity of the polymers, which limit the usage of(More)
Poly(L-lactic acid)(PLLA) and poly(L-lactic-co-glycolic acid) (PLGA) (85/15) were modified by plasma treatment. Then they were collagen anchored (PT/CA), and the cell affinity was evaluated by cell culture under shear or shear-free conditions. A convenient and "intuitionistic" dyeing method has been proposed for measuring the modified depth when plasma(More)
When coaptation is not possible in the repair of nerve injuries, a bridge of biomaterial scaffold provides a structural support for neuronal cell growth and guides nerve regeneration. Poly(lactide-co-glycolide) (PLGA) scaffolds have been widely investigated for neural tissue engineering applications. In order to investigate guided neurite growth, we have(More)
A series of gases were used for plasma treatment of poly-(L-lactide) (PLLA) under various conditions such as atmosphere, electric power, pressure and time. The NH(3) was preferably selected for modifying the surface of PLLA because it can obtain appropriate hydrophilicity and surface energy with high polar component compared to other gases. Subsequently,(More)
Surface properties of poly (D,L-lactide) (PDLLA) were modified by combining plasma treatment and collagen modification. The changes of surface properties were characterized by contact angles, surface energy, X-ray photoelectron spectra and scanning electron microscopy. The mouse 3T3 fibroblasts were used as model cells to evaluate the cell affinity of PDLLA(More)