Shengqiang Cai

Learn More
Many engineering devices and natural phenomena involve gels that swell under the constraint of hard materials. The constraint causes a field of stress in a gel, and often makes the swelling inhomogeneous even when the gel reaches a state of equilibrium. This paper develops a theory of constrained swelling of a pH-sensitive hydrogel, a network of polymers(More)
Thin poly(N-isopropylacrylamide) (PNIPAM) hydrogels were allowed to swell under two conditions: as freestanding layers and as substrate-attached layers. Through a combination of particle tracking and defocusing methods, the positions of beads embedded within the gels were monitored over time via fluorescence microscopy, providing a convenient method to(More)
Evidence has accumulated recently that a high-capacity electrode of a lithium-ion battery may not recover its initial shape after a cycle of charge and discharge. Such a plastic behavior is studied here by formulating a theory that couples large amounts of lithiation and deformation. The homogeneous lithiation and deformation in a small element of an(More)
This paper uses the thermodynamic data of aqueous solutions of uncrosslinked poly(N-isopropylacrylamide) (PNIPAM) to study the phase transition of PNIPAM hydrogels. At a low temperature, uncrosslinked PNIPAM can be dissolved in water and form a homogenous liquid solution. When the temperature is increased, the solution separates into two liquid phases with(More)
This paper studies the collapse of a void in an elastomer caused by osmosis. The void is filled with liquid water, while the elastomer is surrounded by unsaturated air. The difference in humidity motivates water molecules to permeate through the elastomer, from inside the void to outside the elastomer, leaving the liquid water inside the void in tension.(More)
Related Articles Dynamics of solvent-free grafted nanoparticles J. Chem. Phys. 136, 044902 (2012) Energy transfer and dynamics studies of photoluminescence of polythiophene derivative in blend thin films J. Appl. Phys. 111, 023512 (2012) Note: Percolation in two-dimensional flexible chains systems J. Chem. Phys. 136, 046101 (2012) Ultraviolet and infrared(More)
In a soft elastic film compressed on a stiff substrate, creases nucleate at preexisting defects and grow across the surface of the film like channels. Both nucleation and growth are resisted by the surface energy, which we demonstrate by studying creases for elastomers immersed in several environments--air, water, and an aqueous surfactant solution.(More)
When an elastomer imbibes a solvent and swells, a force is generated if the elastomer is constrained by a hard material. The magnitude of the force depends on the geometry of the constraint, as well as on the chemistry of the elastomer and solvent. This paper models an elastomer crosslinked on the exterior surface of a metallic tubing. The elastomer then(More)