Shengnan Pan

Learn More
In this paper, we propose deep architecture to dynamically learn the most discriminative features from data for both single-cell and object tracking in computational biology and computer vision. Firstly, the discriminative features are automatically learned via a convolutional deep belief network (CDBN). Secondly, we design a simple yet effective method to(More)
Tracking individual-cell/object over time is important in understanding drug treatment effects on cancer cells and video surveillance. A fundamental problem of individual-cell/object tracking is to simultaneously address the cell/object appearance variations caused by intrinsic and extrinsic factors. In this paper, inspired by the architecture of deep(More)
  • 1