Shengmin Zhou

Learn More
Multiple flavohemoglobin (FHb) homolog genes are found in the genomes of eukaryotic microorganisms, but their functions remain unknown. In this study, two distinct types of FHbs (predictive cytosolic FHb1 and predictive mitochondrial FHb2) from the fungus Aspergillus oryzae were investigated to elucidate the physiological roles of these FHbs. The fhb1 gene(More)
Although denitrification or nitrate respiration has been found among a few eukaryotes, its phylogenetic relationship with the bacterial system remains unclear because orthologous genes involved in the bacterial denitrification system were not identified in these eukaryotes. In this study, we isolated a gene from the denitrifying fungus Fusarium oxysporum(More)
Many Gram-negative bacteria produce membrane vesicles (MVs) that serve as vehicles to mediate intraspecies and interspecies interactions. Despite their ubiquity in Gram-negative bacteria and their biological importance, how MV formation is regulated is poorly understood. Pseudomonas aeruginosa is a ubiquitous bacterium that is one of the most extensively(More)
Two flavohemoglobin (FHb) genes, fhb1 and fhb2, were cloned from Aspergillus oryzae. The amino acid sequences of the deduced FHb1 and FHb2 showed high identity to other FHbs except for the predicted mitochondrial targeting signal in the N-terminus of FHb2. The recombinant proteins displayed absorption spectra similar to those of other FHbs. FHb1 and FHb2(More)
The occurrence of denitrification and nitrate respiration among eukaryotes has been established during the last few decades. However, denitrification-related eukaryotic genes have been isolated from only a few fungi, and eukaryotic denitrification (or nitrate respiration) is still inadequately understood. In this study, we identified genes that were(More)
Aromatic polymers include novel and extant functional materials although none has been produced from biotic building blocks derived from primary biomass glucose. Here we screened microbial aromatic metabolites, engineered bacterial metabolism and fermented the aromatic lactic acid derivative β-phenyllactic acid (PhLA). We expressed the Wickerhamia(More)
Apart from their well-established role in nitric oxide detoxification, flavohemoglobins (FHbs) are also believed to be involved in protection against oxidative stress in some yeast and bacteria. However, different studies have reported contradictory results in this regard. Here, we investigate the relationship between two FHbs in Aspergillus oryzae(More)
Thiamine pyrophosphate (TPP) is a critical cofactor and its biosynthesis is under the control of TPP availability. Here we disrupted a predicted thiA gene of the fungus Aspergillus nidulans and demonstrated that it is essential for synthesizing cellular thiamine. The thiamine riboswitch is a post-transcriptional mechanism for TPP to repress gene expression(More)
Nitric oxide (NO) is a toxic reactive nitrogen species that induces microbial adaption mechanisms. Screening a genomic DNA library identified a new gene, ntpA, that conferred growth tolerance upon Aspergillus nidulans against exogenous NO. The gene encoded a cysteine-rich 23-amino-acid peptide that reacted with NO and S-nitrosoglutathione to generate an(More)
We cloned a bacterial copper-containing nitrite reductase (NirK) homolog gene of Aspergillus oryzae (AonirK). Alignment showed that amino acid residues crucial for copper binding are conserved in the deduced sequence of the fungal protein. The recombinant protein exhibited distinct nitrite reductase activity, and its absorption and EPR spectra showed the(More)