Learn More
This paper explores the use of social annotations to improve websearch. Nowadays, many services, e.g. del.icio.us, have been developed for web users to organize and share their favorite webpages on line by using social annotations. We observe that the social annotations can benefit web search in two aspects: 1) the annotations are usually good summaries of(More)
The rapidly increasing popularity of community-based Question Answering (cQA) services, e.g. Yahoo! Answers, Baidu Zhidao, etc. have attracted great attention from both academia and industry. Besides the basic problems, like question searching and answer finding, it should be noted that the low participation rate of users in cQA service is the crucial(More)
This paper is concerned with the problem of mining social emotions from text. Recently, with the fast development of web 2.0, more and more documents are assigned by social users with emotion labels such as happiness, sadness, and surprise. Such emotions can provide a new aspect for document categorization, and therefore help online users to select related(More)
This paper focuses on analyzing and predicting not-answered questions in Community based Question Answering (CQA) services, such as Yahoo! Answers. In CQA, users express their information needs by submitting questions and await answers from other users. One of the key problems of this pattern is that sometimes no one helps to give answers. In this paper, we(More)
This paper is concerned with the problem of browsing social annotations. Today, a lot of services (e.g., Del.icio.us, Filckr) have been provided for helping users to manage and share their favorite URLs and photos based on social annotations. Due to the exponential increasing of the social annotations, more and more users, however, are facing the problem(More)
This paper deals with the problem of exploring hierarchical semantics from social annotations. Recently, social annotation services have become more and more popular in Semantic Web. It allows users to arbitrarily annotate web resources, thus, largely lowers the barrier to cooperation. Furthermore, through providing abundant meta-data resources, social(More)
This paper is concerned with the problem of social affective text mining, which aims to discover the connections between social emotions and affective terms based on user-generated emotion labels. We propose a joint emotion-topic model by augmenting latent Dirichlet allocation with an additional layer for emotion modeling. It first generates a set of latent(More)
This paper is concerned with the problem of mining competitors from the Web automatically. Nowadays the fierce competition in the market necessitates every company not only to know which companies are its primary competitors, but also in which fields the company's rivals compete with itself and what its competitors' strength is in a specific competitive(More)