Learn More
We performed in situ detection of specific and nonspecific binding during immunoreaction on surfaces at the same location before and after analyte was injected using tapping-mode atomic force microscopy (TM-AFM) in liquid and demonstrated the ability of TM-AFM to monitor the occurrence of single-molecule binding events and to distinguish nonspecific from(More)
We introduce a dual-functional biocompatible material based on zwitterionic poly(carboxybetaine methacrylate) (polyCBMA), which not only highly resists protein adsorption/cell adhesion, but also has abundant functional groups convenient for the immobilization of biological ligands, such as proteins. The dual-functional properties are unique to(More)
In this work, we report a study of long-chain zwitterionic poly(sulfobetaine methacrylate) (pSBMA) surfaces grafted via atom transfer radical polymerization (ATRP) for their resistance to bacterial adhesion and biofilm formation. Previously, we demonstrated that p(SBMA) is highly resistant to nonspecific protein adsorption. Poly(oligo(ethylene glycol)(More)
The simultaneous detection of multiple analytes is an important consideration for the advancement of biosensor technology. Currently, few sensor systems possess the capability to accurately and precisely detect multiple antigens. This work presents a simple approach for the functionalization of sensor surfaces suitable for multichannel detection. This(More)
We report the quantitative and simultaneous detection of four species of bacteria, Escherichia coli O157:H7, Salmonella choleraesuis serotype typhimurium, Listeria monocytogenes, and Campylobacter jejuni, using an eight-channel surface plasmon resonance (SPR) sensor based on wavelength division multiplexing. Detection curves showing SPR response versus(More)
This work evaluates a newly developed wavelength modulation-based SPR biosensor for the detection of staphylococcal enterotoxin B (SEB) in milk. Two modes of operation of the SPR biosensor are described: direct detection of SEB and sandwich assay. In the sandwich assay detection mode, secondary antibodies are bound to the already captured toxin to amplify(More)
In this work, we show the strong resistance of zwitterionic phosphorylcholine (PC) self-assembled monolayers (SAMs) to protein adsorption and examine key factors leading to their nonfouling behavior using both experimental and molecular simulation techniques. Zwitterions with a balanced charge and minimized dipole are excellent candidates as nonfouling(More)
This study examined six different polymer and self-assembled monolayer (SAM) surface modifications for their interactions with human serum and plasma. It was demonstrated that zwitterionic polymer surfaces are viable alternatives to more traditional surfaces based on poly(ethylene glycol) (PEG) as nonfouling surfaces. All polymer surfaces were formed using(More)
Biomimetic polymers with a zwitterionic moiety for ultra low fouling and a catechol end group for surface anchoring have been developed. Binding tests of the adhesive polymers on various surfaces, including amino (NH(2)), hydroxyl (OH), and methyl (CH(3)) terminated self-assembled monolayers (SAMs) along with bare gold, were performed under acidic and basic(More)
In this work, five self-assembled monolayers (SAMs) and three polymeric brushes with very low fibrinogen adsorption were prepared. The five SAMs are oligo(ethylene glycol) (OEG), phosphorylcholine (PC), oligo(phosphorylcholine) (OPC), and two mixed positively and negatively charged SAMs of SO(3)(-)/N(+)(CH(3))(3) (SA/TMA) and COO(-)/N(+)(CH(3))(3) (CA/TMA).(More)