Learn More
OBJECTIVE The NLRP3 (NALP3, cryopyrin) inflammasome, a key component of the innate immune system, facilitates caspase-1 and interleukin (IL)-1β processing, which amplifies the inflammatory response. Here, we investigated whether NLRP3 knockdown decreases neutrophil infiltration, reduces brain edema, and improves neurological function in an intracerebral(More)
Despite decades of study, subarachnoid hemorrhage (SAH) continues to be a serious and significant health problem in the United States and worldwide. The mechanisms contributing to brain injury after SAH remain unclear. Traditionally, most in vivo research has heavily emphasized the basic mechanisms of SAH over the pathophysiological or morphological changes(More)
Insoluble fibrils of amyloid-beta peptide (Abeta) are the major component of senile and vascular plaques found in the brains of Alzheimer's disease (AD) patients. Abeta has been implicated in neuronal and vascular degeneration because of its toxicity to neurons and endothelial cells in vitro; some of these cells die with characteristic features of(More)
AIM To determine whether Nrf2 signaling pathway activation could attenuate oxidative stress and neuronal damage following traumatic brain injury (TBI). METHODS Controlled cortical impact (CCI) injury was performed in Sprague-Dawley rats and Nrf2-knockout or control mice. Sulforaphane (SFN), a potent Nrf2 activator, was used to activate Nrf2. Oxidative(More)
Intracerebral hemorrhage (ICH) is a common and severe neurological disorder, which is associated with high rates of mortality and morbidity. Despite extensive research into the pathology of ICH, there are still no clinically approved neuroprotective treatments. Currently, increasing evidence has shown that inflammatory responses participate in the(More)
Neuroinflammation contributes to the pathogenesis of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Cytotoxic events following SAH, such as extracellular accumulation of adenosine triphosphate (ATP), may activate the P2X purinoceptor 7 (P2X7R)/cryopyrin inflammasome axis, thus inducing the proinflammatory cytokine IL-1β/IL-18 secretion. We(More)
OBJECTIVES Brilliant blue G, a selective P2X7 receptor antagonist, exhibits neuroprotective properties. This study examined whether brilliant blue G treatment ameliorates early brain injury after experimental subarachnoid hemorrhage, specifically via inhibiting p38 mitogen-activated protein kinase-related proapoptotic pathways. DESIGN Controlled in vivo(More)
Autophagy involves degradation of dysfunctional cellular components through the actions of lysosomes. Apoptosis is the process of programmed cell death involving a series of characteristic cell changes. Autophagy and apoptosis, as self-destructive processes, play an important role in the pathogenesis of neurological diseases; and a crosstalk between(More)
BACKGROUNDS While previous meta-analysis have investigated the efficacy of cilostazol in the secondary prevention of ischemic stroke, they were criticized for their methodology, which confused the acute and chronic phases of stroke. We present a new systematic review, which differs from previous meta-analysis by distinguishing between the different phases(More)
Cerebral vasospasm (CV) remains a common and devastating complication in patients with subarachnoid hemorrhage (SAH). Despite its clinical significance and extensive research, the underlying pathogenesis and therapeutic perspectives of CV remain incompletely understood. Recently, it has been suggested that molecular hydrogen (H(2)) can selectively reduce(More)