Learn More
Capacitative Ca(2+) entry (CCE) through store-operated Ca(2+) (SOC) channels plays an important role in returning Ca(2+) to the sarcoplasmic reticulum (SR) and regulating cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)). A rise in [Ca(2+)](cyt) and sufficient Ca(2+) in the SR are required for pulmonary artery smooth muscle cell (PASMC) proliferation. We(More)
ANG-(1-7) improves the function of the remodeling heart. Although this peptide is generated directly within the myocardium, the effects of ANG-(1-7) on cardiac fibroblasts that play a critical role in cardiac remodeling are largely unknown. We tested the hypothesis that specific binding of ANG-(1-7) to cardiac fibroblasts regulates cellular functions that(More)
Sweeney, Michele, Ying Yu, Oleksandr Platoshyn, Shen Zhang, Sharon S. McDaniel, and Jason X.-J. Yuan. Inhibition of endogenous TRP1 decreases capacitative Ca2 entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 283: L144–L155, 2002. First published February 8, 2002; 10.1152/(More)
Pulmonary vascular medial hypertrophy due to proliferation of pulmonary artery smooth muscle cells (PASMC) greatly contributes to the increased pulmonary vascular resistance in pulmonary hypertension patients. A rise in cytosolic free Ca2+ concentration ([Ca2+]cyt) is an important stimulus for cell growth in PASMC. Resting [Ca2+]cyt, intracellularly stored(More)
Apoptotic cell shrinkage, an early hallmark of apoptosis, is regulated by K+ efflux and K+ channel activity. Inhibited apoptosis and downregulated K+ channels in pulmonary artery smooth muscle cells (PASMC) have been implicated in development of pulmonary vascular medial hypertrophy and pulmonary hypertension. The objective of this study was to test the(More)
Vasoconstriction and vascular medial hypertrophy, resulting from increased intracellular [Ca2+] in pulmonary artery smooth muscle cells (PASMC), contribute to elevated vascular resistance in patients with idiopathic pulmonary arterial hypertension (IPAH). Caveolae, microdomains within the plasma membrane, contain the protein caveolin, which binds certain(More)
Zhang S, Patel HH, Murray F, Remillard CV, Schach C, Thistlethwaite PA, Insel PA, Yuan JX. Pulmonary artery smooth muscle cells from normal subjects and IPAH patients show divergent cAMP-mediated effects on TRPC expression and capacitative Ca entry. Am J Physiol Lung Cell Mol Physiol 292: L1202–L1210, 2007. First published December 22, 2006;(More)
Aromatase (CYP19A1) catalyzes the conversion of androgens to estrogens. In teleosts, duplicated copies of cyp19a1 genes, namely cyp19a1a and cyp19a1b, were identified, however, the transcriptional regulation of these two genes remains poorly understood. In the present study, the 5'-flanking regions of the orange-spotted grouper cyp19a1a (gcyp19a1a) and(More)
Activity of voltage-gated K(+) (K(V)) channels in pulmonary artery smooth muscle cells (PASMC) plays an important role in control of apoptosis and proliferation in addition to regulating membrane potential and pulmonary vascular tone. Bone morphogenetic proteins (BMPs) inhibit proliferation and induce apoptosis in normal human PASMC, whereas dysfunctional(More)