Shekhar C. Mande

Learn More
The Mycobacterium tuberculosis genome sequence reveals remarkable absence of many nucleoid-associated proteins (NAPs), such as HNS, Hfq or DPS. In order to characterize the nucleoids of M. tuberculosis, we have attempted to identify NAPs, and report an interesting finding that a chaperonin-homolog, GroEL1, is nucleoid associated. We report that M.(More)
PAR-3D ( is a web-based tool that exploits the fact that relative juxtaposition of active site residues is a conserved feature in functionally related protein families. The server uses previously calculated and stored values of geometrical parameters of a set of known proteins (training set) for(More)
Response of cells to changing environmental conditions is governed by the dynamics of intricate biomolecular interactions. It may be reasonable to assume, proteins being the dominant macromolecules that carry out routine cellular functions, that understanding the dynamics of protein:protein interactions might yield useful insights into the cellular(More)
Chaperonin-60s are large double ring oligomeric proteins with a central cavity where unfolded polypeptides undergo productive folding. In conjunction with their co-chaperonin, Chaperonin-60s bind non-native polypeptides and facilitate their refolding in an ATP-dependent manner. The ATPase activity of Chaperonin-60 is tightly regulated by the 10 kDa(More)
The genome of an organism characterizes the complete set of genes that it is capable of encoding. However, not all of the genes are transcribed and translated under any defined condition. The robustness that an organism exhibits to environmental perturbations is partly conferred by the genes that are constitutively expressed under all the conditions, and(More)
Chaperonin 60s are a ubiquitous class of proteins that promote folding and assembly of other cellular polypeptides in an ATP-dependent manner. The oligomeric state of chaperonin 60s has been shown to be crucial to their role as molecular chaperones. Chaperonin 60s are also known to be important stimulators of the immune system. Mycobacterium tuberculosis(More)
Mycobacterium tuberculosis alkylhydroperoxidase C (AhpC) belongs to the peroxiredoxin family, but unusually contains three cysteine residues in its active site. It is overexpressed in isoniazid-resistant strains of M. tuberculosis. We demonstrate that AhpC is capable of acting as a general antioxidant by protecting a range of substrates including(More)
About 90% of the people infected with Mycobacterium tuberculosis carry latent bacteria that are believed to get activated upon immune suppression. One of the fundamental challenges in the control of tuberculosis is therefore to understand molecular mechanisms involved in the onset of latency and/or reactivation. We have attempted to address this problem at(More)
An important aspect of molecular interactions is the dynamics associated with growth conditions. Intuitively, not all possible interactions take place together all the time in a cell as only a subset of genes is expressed based on environmental conditions. Large scale gene expression data of Escherichia coli was analyzed to understand the dynamics exhibited(More)
High-throughput experiments such as microarrays and deep sequencing provide large scale information on the pattern of gene expression, which undergoes extensive remodeling as the cell dynamically responds to varying environmental cues or has its function disrupted under pathological conditions. An important initial step in the systematic analysis and(More)