Shekhar C. Mande

Learn More
PAR-3D ( is a web-based tool that exploits the fact that relative juxtaposition of active site residues is a conserved feature in functionally related protein families. The server uses previously calculated and stored values of geometrical parameters of a set of known proteins (training set) for(More)
Response of cells to changing environmental conditions is governed by the dynamics of intricate biomolecular interactions. It may be reasonable to assume, proteins being the dominant macromolecules that carry out routine cellular functions, that understanding the dynamics of protein:protein interactions might yield useful insights into the cellular(More)
The genome of an organism characterizes the complete set of genes that it is capable of encoding. However, not all of the genes are transcribed and translated under any defined condition. The robustness that an organism exhibits to environmental perturbations is partly conferred by the genes that are constitutively expressed under all the conditions, and(More)
The thioredoxin system exists ubiquitously and participates in essential antioxidant and redox-regulation processes via a pair of conserved cysteine residues. In Mycobacterium tuberculosis, which lacks a genuine glutathione system, the thioredoxin system provides reducing equivalents inside the cell. The three-dimensional structure of thioredoxin reductase(More)
About 90% of the people infected with Mycobacterium tuberculosis carry latent bacteria that are believed to get activated upon immune suppression. One of the fundamental challenges in the control of tuberculosis is therefore to understand molecular mechanisms involved in the onset of latency and/or reactivation. We have attempted to address this problem at(More)
An important aspect of molecular interactions is the dynamics associated with growth conditions. Intuitively, not all possible interactions take place together all the time in a cell as only a subset of genes is expressed based on environmental conditions. Large scale gene expression data of Escherichia coli was analyzed to understand the dynamics exhibited(More)
Organic solvents are known to bring about dehydration of proteins, the molecular basis of which has remained uncharacterized. The dehydration effect in many cases leads to eventual unfolding of proteins through the macroscopic solvent effect. In some cases, the organic solvent molecules also bind to protein surfaces, thereby forcing local unfolding. The(More)
High-throughput experiments such as microarrays and deep sequencing provide large scale information on the pattern of gene expression, which undergoes extensive remodeling as the cell dynamically responds to varying environmental cues or has its function disrupted under pathological conditions. An important initial step in the systematic analysis and(More)
BACKGROUND A comprehensive map of the human-M. tuberculosis (MTB) protein interactome would help fill the gaps in our understanding of the disease, and computational prediction can aid and complement experimental studies towards this end. Several sequence-based in silico approaches tap the existing data on experimentally validated protein-protein(More)
Chaperonins are a class of molecular chaperones that assemble into a large double ring architecture with each ring constituting seven to nine subunits and enclosing a cavity for substrate encapsulation. The well-studied Escherichia coli chaperonin GroEL binds non-native substrates and encapsulates them in the cavity thereby sequestering the substrates from(More)
  • 1