Sheila Dwyer

Learn More
CONTEXT Recent research suggests that variation in the gene encoding dystrobrevin binding protein (DTNBP1) confers susceptibility to schizophrenia. Thus far, no specific risk haplotype has been identified in more than 1 study. OBJECTIVES To confirm DTNBP1 as a schizophrenia susceptibility gene, to identify and replicate specific risk and protective(More)
A recent genome-wide association study (GWAS) reported evidence for association between rs1344706 within ZNF804A (encoding zinc-finger protein 804A) and schizophrenia (P=1.61 × 10(-7)), and stronger evidence when the phenotype was broadened to include bipolar disorder (P=9.96 × 10(-9)). In this study we provide additional evidence for association through(More)
We and others have previously reported linkage to schizophrenia on chromosome 10q25-q26 but, to date, a susceptibility gene in the region has not been identified. We examined data from 3606 single-nucleotide polymorphisms (SNPs) mapping to 10q25-q26 that had been typed in a genome-wide association study (GWAS) of schizophrenia (479 UK cases/2937 controls).(More)
We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter(More)
Traditional research has focused on the visible effects of corrosion--failures, leaks, and financial debits--and often overlooked the more hidden health and aesthetic aspects. Clearly, corrosion of copper pipe can lead to levels of copper in the drinking water that exceed health guidelines and cause bitter or metallic tasting water. Because water will(More)
The ENCyclopedia Of DNA Elements (ENCODE) project is a public research consortium that aims to identify all functional elements of the human genome sequence. The project comprised 1640 data sets, from 147 different cell type and the findings were released in a coordinated set of 34 publications across several journals. The ENCODE publications report that(More)
The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether(More)
Squeezed states of light are an important tool for optical measurements below the shot noise limit and for optical realizations of quantum information systems. Recently, squeezed vacuum states were deployed to enhance the shot noise limited performance of gravitational wave detectors. In most practical implementations of squeezing enhancement, relative(More)
Gravitational waves from a variety of sources are predicted to superpose to create a stochastic background. This background is expected to contain unique information from throughout the history of the Universe that is unavailable through standard electromagnetic observations, making its study of fundamental importance to understanding the evolution of the(More)
We present the results of a LIGO search for gravitational waves (GWs) associated with GRB 051103, a short-duration hard-spectrum gamma-ray burst whose electromagnetically determined sky position is coincident with the spiral galaxy M81, which is 3.6 Mpc from Earth. Possible progenitors for shorthard GRBs include compact object mergers and soft gamma(More)