Learn More
Human immunodeficiency virus (HIV)-positive patients commonly have attention and concentration problems. However, it remains unclear how HIV infection affects the attention network. Therefore, blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI) was performed in 36 subjects (18 HIV and 18 seronegative [SN] controls) during a(More)
BACKGROUND/OBJECTIVES A previous fMRI study demonstrated increased brain activation during working memory tasks in patients with HIV with mild dementia. The current study aims to determine whether patients who are HIV-1 positive and have normal cognitive function also show increased brain activation on fMRI. METHODS Blood oxygenation level-dependent(More)
Functional MRI studies are very sensitive to motion; head movements of as little as 1-mm translations or 1 degrees rotations may cause spurious signals. An algorithm was developed that uses k-space MRI data to monitor subject motion during functional MRI time series. A k-space weighted average of squared difference between the initial scan and subsequent(More)
Deficits in attention and working memory are common in human immuno deficiency virus type 1 (HIV-1)-infected patients, but the pathophysiology of these deficits is poorly understood. Modern neuroimaging techniques, such as proton magnetic resonance spectroscopy ((1)H MRS) and functional MRI (fMRI), can assess some of the processes underlying HIV brain(More)
In this paper we introduce Nanoscale Optofluidic Sensor Arrays (NOSAs), which are an optofluidic architecture for performing highly parallel, label free detection of biomolecular interactions in aqueous environments. The architecture is based on the use of arrays of 1D photonic crystal resonators which are evanescently coupled to a single bus waveguide.(More)
The authors present an approach for specific and rapid unlabeled detection of a virus by using a microsphere-based whispering gallery mode sensor that transduces the interaction of a whole virus with an anchored antibody. They show theoretically that this sensor can detect a single virion below the mass of HIV. A micro-fluidic device is presented that(More)
In this work, we demonstrate improved molecular detection sensitivity for silicon slab photonic crystal cavities by introducing multiple-hole defects (MHDs), which increase the surface area available for label-free detection without degrading the quality factor. Compared to photonic crystals with L3 defects, adding MHDs into photonic crystal cavities(More)
Silicon nitride (Si 3 N 4) ring resonators are critical for a variety of photonic devices. However the intrinsically high film stress of silicon nitride has limited both the optical confinement and quality factor (Q) of ring resonators. We show that stress in Si 3 N 4 films can be overcome by introducing mechanical trenches for isolating photonic devices(More)
In this paper, we introduce a novel approach for optical sensing based on the excitation of critically localized modes in two-dimensional deterministic aperiodic structures generated by a Rudin-Shapiro (RS) sequence. Based on a rigorous computational analysis, we demonstrate that RS photonic structures provide a large number of resonant modes better suited(More)
Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a(More)