Learn More
Navigation depends on multiple neural systems that encode the moment-to-moment changes in an animal's direction and location in space. These include head direction (HD) cells representing the orientation of the head and grid cells that fire at multiple locations, forming a repeating hexagonal grid pattern. Computational models hypothesize that generation of(More)
Rats use multiple sources of information to maintain spatial orientation. Although previous work has focused on rats' use of environmental cues, a growing number of studies have demonstrated that rats also use self-movement cues to organize navigation. This review examines the extent that kinematic analysis of naturally occurring behavior has provided(More)
Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal's movements. These signals include grid cells, which fire at multiple locations, forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz electroencephalogram (EEG) oscillation that is(More)
Rats possess a rich repertoire of sequentially organized, natural behaviors. It is possible that these natural behaviors may reflect implicit learning or relatively fixed movement patterns. The present study was conducted to determine whether factors known to influence implicit learning produce similar effects on the acquisition of skilled walking. Three(More)
Debate surrounds the role of the limbic system structures' contribution to spatial orientation. The results from previous studies have supported a role for the mammillary bodies and their projections to the anterior thalamus in rapid encoding of relationships among environmental cues; however, this work is based on behavioral tasks in which environmental(More)
Degeneration of the septohippocampal system is associated with the progression of Dementia of the Alzheimer’s type (DAT). Impairments in mnemonic function and spatial orientation become more severe as DAT progresses. Although evidence supports a role for cholinergic function in these impairments, relatively few studies have examined the contribution of the(More)
Converging lines of evidence have supported a role for the nucleus basalis magnocellularis (NB) in attentional mechanisms; however, debate continues regarding the role of the medial septum in behavior (MS). Recent studies have supported a role for the septohippocampal system in the online processing of internally generated cues. The current study was(More)
The role of limbic system structures in spatial orientation continues to be debated. The hippocampus (HPC) has been implicated in encoding symbolic representations of environments (i.e., cognitive map), whereas entorhinal cortex (EC) function has been implicated in self-movement cue processing (i.e., dead reckoning). These distinctions largely depend on the(More)
This series of experiments evaluates the nature of the representation that mediates human (Homo sapiens) and rat (Rattus norvegicus) movement characteristics on analogous spatial learning tasks. The results of Experiment 1 demonstrated that self-movement cues were sufficient to guide the performance of human participants during place training and(More)
The current set of studies examines the contribution of movement segmentation to self-movement cue processing for estimating direction and distance to a start location in humans and rats. Experiments 1 and 2 examined the extent that ambulatory dead reckoning tasks can be adapted to the manipulatory scale in humans. Experiments 3 and 4 investigated the(More)