Learn More
Blue Gene/L supercomputer P. Coteus H. R. Bickford T. M. Cipolla P. G. Crumley A. Gara S. A. Hall G. V. Kopcsay A. P. Lanzetta L. S. Mok R. Rand R. Swetz T. Takken P. La Rocca C. Marroquin P. R. Germann M. J. Jeanson As 1999 ended, IBM announced its intention to construct a onepetaflop supercomputer. The construction of this system was based on a cellular(More)
The biological mechanisms of autism spectrum disorders (ASDs) are largely unknown in spite of extensive research. ASD is characterized by altered function of multiple brain areas including the temporal cortex and by an increased synaptic excitation:inhibition ratio. While numerous studies searched for evidence of increased excitation in ASD, fewer have(More)
BACKGROUND Although it is known that stress elevates the levels of pro-inflammatory cytokines and promotes hyper-excitable central conditions, a causal relationship between these two factors has not yet been identified. Recent studies suggest that increases in interleukin 6 (IL-6) levels are specifically associated with stress. We hypothesized that IL-6(More)
Slow spike and wave discharges (0.5-4 Hz) are a feature of many epilepsies. They are linked to pathology of the thalamocortical axis and a thalamic mechanism has been elegantly described. Here we present evidence for a separate generator in local circuits of associational areas of neocortex manifest from a background, sleep-associated delta rhythm in rat.(More)
Noradrenergic terminals from the locus coeruleus release norepinephrine (NE) throughout most brain areas, including the auditory cortex, where they affect neural processing by modulating numerous cellular properties including the inhibitory γ-aminobutyric acid (GABA)ergic transmission. We recently demonstrated that NE affects GABAergic signaling onto(More)
The BlueGene/L supercomputer has been designed with a focus on power/performance efficiency to achieve high application performance under the thermal constraints of common data centers. To achieve this goal, emphasis was put on system solutions to engineer a power-efficient system. To exploit thread level parallelism, the BlueGene/L system can scale to 64(More)
The Blue Gene/L system at the Department of Energy Lawrence Livermore National Laboratory in Livermore, California is the world’s most powerful supercomputer. It has achieved groundbreaking performance in both standard benchmarks as well as real scientific applications. In that process, it has enabled new science that simply could not be done before. Blue(More)
Large powerful networks coupled to state-of-the-art processors have traditionally dominated supercomputing. As technology advances, this approach is likely to be challenged by a more cost-effective System-On-A-Chip approach, with higher levels of system integration. The scalability of applications to architectures with tens to hundreds of thousands of(More)
  • 1