Shawn D Erickson

Learn More
Genetic redundancy is a problem in gene targeting studies because functionally relevant sister proteins can compensate for the lack of protein product of a targeted gene. A molecular system is chosen in which it is hoped to demonstrate both the lack and presence of compensation after disruption of particular single genes. Mammals may not be able to(More)
By the screening of a combinatorial library for inhibitors of nitric oxide (NO) formation by the inducible isoform of nitric oxide synthase (iNOS) using a whole-cell assay, 2-(imidazol-1-yl)pyrimidines were identified. Compounds were found to inhibit the dimerization of iNOS monomers, thus preventing the formation of the dimeric, active form of the enzyme.(More)
D-Amino acid transaminase, a pyridoxal phosphate (PLP) enzyme, is inactivated by its natural substrate, D-alanine, concomitant with its alpha-decarboxylation [Martinez del Pozo, A., Yoshimura, T., Bhatia, M. B., Futaki, S., Manning, J. M., Ringe, D., and Soda, K. (1992) Biochemistry 31, 6018-6023; Bhatia, M. B., Martinez del Pozo, A., Ringe, D., Yoshimura,(More)
An imidazolylpyrimidine was identified in a CXCR2 chemokine receptor antagonist screen and was optimized for potency, in vitro metabolic stability, and oral bioavailability. It was found that subtle structural modification within the series affected the oral bioavailability. Potent and orally available CXCR2 antagonists are herein reported.
Potency with potential: 2-Phenoxy-nicotinamides were identified as potent agonists at the GPBAR1 receptor, a target in the treatment of obesity, type 2 diabetes and metabolic syndrome. Extensive structure-activity relationship studies supported by homology modeling and docking resulted in the identification of optimized GPBAR1 agonists, potent against both(More)
D-Amino acid transaminase is a bacterial enzyme that uses pyridoxal phosphate (PLP) as a cofactor to catalyze the conversion of D-amino acids into their corresponding alpha-keto acids. This enzyme has already been established as a target for novel antibacterial agents through suicide inactivation by a number of compounds. To improve their potency and(More)
Benzimidazole and indane are the two key fragments in our potent and selective MCH-1 receptor (MCHR1) antagonists. To identify novel linkers connecting the two fragments, we investigated diamino-cycloalkane-derived analogs and discovered highly potent antagonists with cis-1,4-diaminocyclohexane as a unique spacer in this chemical class. Structural overlay(More)
  • 1