Learn More
Signaling via bone morphogenetic proteins (BMPs) regulates a vast array of diverse biological processes in the developing embryo and in postembryonic life. Many insights into BMP signaling derive from studies of the BMP signaling gradients that pattern cell fates along the embryonic dorsal-ventral (DV) axis of both vertebrates and invertebrates. This review(More)
In vertebrates and invertebrates, the bone morphogenetic protein (BMP) signaling pathway patterns cell fates along the dorsoventral (DV) axis. In vertebrates, BMP signaling specifies ventral cell fates, whereas restriction of BMP signaling by extracellular antagonists allows specification of dorsal fates. In misexpression assays, the conserved extracellular(More)
The Bicoid morphogen gradient directs the patterning of cell fates along the anterior-posterior axis of the syncytial Drosophila embryo and serves as a paradigm of morphogen-mediated patterning. The simplest models of gradient formation rely on constant protein synthesis and diffusion from anteriorly localized source mRNA, coupled with uniform protein(More)
Patterning the embryonic dorsoventral axis of both vertebrates and invertebrates requires signalling through bone morphogenetic proteins (BMPs). Although a well-studied process, the identity of the physiologically relevant BMP signalling complex in the Drosophila melanogaster embryo is controversial, is generally inferred from cell culture studies and has(More)
Messenger RNA localization is a conserved mechanism for spatial control of protein synthesis, with key roles in generating cellular and developmental asymmetry. Whereas different transcripts may be targeted to the same subcellular domain, the extent to which their localization is coordinated is unclear. Using quantitative single-molecule imaging, we(More)
Transcriptional regulation of gene expression is fundamental to most cellular processes, including determination of cellular fates. Quantitative studies of transcription in cultured cells have led to significant advances in identifying mechanisms underlying transcriptional control. Recent progress allowed implementation of these same quantitative methods in(More)
Information theory is gaining popularity as a tool to characterize performance of biological systems. However, information is commonly quantified without reference to whether or how a system could extract and use it; as a result, information-theoretic quantities are easily misinterpreted. Here, we take the example of pattern-forming developmental systems(More)
Patterning the embryonic dorsoventral (DV) axis of both vertebrates and invertebrates requires signaling via Bone Morphogenetic Proteins (BMPs)1. Although a well studied process, the physiologically relevant BMP signaling complex in the Drosophila embryo is controversial2, 3 and generally inferred from cell culture studies, and has not been investigated in(More)
1. Although a well-studied process, the identity of the physiologically relevant BMP signalling complex in the Drosophila melanogaster embryo is controversial 2,3 , is generally inferred from cell culture studies and has not been investigated in vertebrates. Here, we demonstrate that dorsoventral patterning in zebrafish, Danio rerio, requires two classes of(More)
  • 1