Learn More
Eight members of the TRP-melastatin (TRPM) subfamily have been identified, whose physiological functions and distribution are poorly characterized. Although tissue expression and distribution patterns have been reported for individual TRPM channels, comparisons between individual studies are not possible because of variations in analysis techniques and(More)
1. TRPM2 (melastatin-like transient receptor potential 2 channel) is a nonselective cation channel that is activated under conditions of oxidative stress leading to an increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)) and cell death. We investigated the role of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP) on hydrogen peroxide(More)
We report the detailed expression profile of TRPM2 mRNA within the human central nervous system (CNS) and demonstrate increased TRPM2 mRNA expression at 1 and 4 weeks following ischemic injury in the rat transient middle cerebral artery occlusion (tMCAO) stroke model. Microglial cells play a key role in pathology produced following ischemic injury in the(More)
TRPM2, a member of the TRP ion channel family, is expressed both in the brain and immune cells of the monocyte lineage. Functionally, it is unique in its activation by intracellular ADP-ribose and both oxidative and nitrosative stress. To date studies of this channel have concentrated on human recombinant channels and rodent native preparations. This(More)
This study used a combination of Western blotting and immunocytochemistry to test whether signalling pathways independent of cyclic AMP have the potential to induce phospho-CREB (pCREB)-like immunoreactivity (-ir) in the oPT. Western blot analysis of extracts of primary cultures of oPT using an antiserum against CREB, revealed a major band of CREB-ir at 44(More)
This study investigated whether melatonin could modulate the phosphorylation of the calcium/cyclic AMP response-element binding-protein (CREB) within primary cell cultures of ovine pars tuberalis (oPT) and pars distalis (oPD). Gel shift assays confirmed the presence of nuclear factors able to alter the electrophoretic mobility of a 32P-labelled CRE(More)
1 Capsaicin and resiniferatoxin (RTX) stimulate Ca2+ influx by activating vanilloid receptor 1 (VR1), a ligand-gated Ca2+ channel on sensory neurones. We investigated whether VR1 activation could also trigger Ca2+ mobilization from intracellular Ca2+ stores. 2 Human VR1-transfected HEK293 cells (hVR1-HEK293) were loaded with Fluo-3 or a mixture of Fluo-4(More)
Heat-shock proteins (hsp) provide a natural link between innate and adaptive immune responses by combining the ideal properties of antigen carriage (chaperoning), targeting and activation of antigen-presenting cells (APC), including dendritic cells (DC). Targeting is achieved through binding of hsp to distinct cell surface receptors and is followed by(More)
Exposure of Syrian hamsters to light 1 h after lights-off rapidly (10 min) induced nuclear immunoreactivity (-ir) to the phospho-Ser133 form of the Ca2+/cAMP response element (CRE) binding protein (pCREB) in the retinorecipient zone of the suprachiasmatic nuclei (SCN). Light also induced nuclear Fos-ir in the same region of the SCN after 1 h. The(More)