Learn More
Activated extracellular signal-regulated kinase (ERK) signaling mediated plasticity-related gene transcription has been proposed for one possible mechanism by which 17β-estradiol (E2) enhances synaptic plasticity and memory. Because activated ERK also enhances plasticity-related mRNA translation in the dendrites of neurons, we sought to determine the(More)
L-type voltage-gated Ca(2+)channels (VGCC) play an important role in dendritic development, neuronal survival, and synaptic plasticity. Recent studies have demonstrated that the gonadal steroid estrogen rapidly induces Ca(2+) influx in hippocampal neurons, which is required for neuroprotection and potentiation of LTP. The mechanism by which estrogen rapidly(More)
Neuromodulation of synaptic plasticity by 17β-estradiol (E2) is thought to influence information processing and storage in the cortex and hippocampus. Because E2 rapidly affects cortical memory and synaptic plasticity, we examined its effects on phosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII), extracellular signal-regulated kinase(More)
Recent studies have shown that ephrin-B2 on sensory afferent fibers from the dorsal root ganglia (DRG) controls transmission of pain sensation to the spinal cord. We examined ephrin-B2 expression in mouse DRG and spinal cord using an ephrin-B2/ß-galactosidase chimeric allele. We found that ephrin-B2 is expressed exclusively in proprioceptive neurons and(More)
  • 1