Shaun L Ellis

Learn More
Recently, it has been shown that the neonatal immune environment can have significant programming effects on the adult neuroimmune response. A single neonatal immune challenge with the bacterial mimetic lipopolysaccharide (LPS) can alter the neuroendocrine, neurochemical and febrile responses to a subsequent, homotypic (LPS) immune challenge as adults. As(More)
The perinatal environment plays a crucial role in programming many aspects of adult physiology. Myriad stressors during pregnancy, from maternal immune challenge to nutritional deficiency, can alter long-term body weight set points of the offspring. In light of the increasing concern over body weight issues, such as obesity and anorexia, in modern societies(More)
Fever is an integral part of the host's defense to infection that is orchestrated by the brain. A reduced febrile response is associated with reduced survival. Consequently, we have asked if early life immune exposure will alter febrile and neurochemical responses to immune stress in adulthood. Fourteen-day-old neonatal male rats were given Escherichia coli(More)
Fever is the most common manifestation of the innate immune response to invading pathogens. Animals prevented from developing fever have increased morbidity and mortality to infection. We now show that early life events can program this innate immune response, in that rats that have been challenged neonatally with the immune stimulant lipopolysaccharide(More)
A single postnatal exposure to the bacterial endotoxin, lipopolysaccharide (LPS), reduces the neuroimmune response to a subsequent LPS exposure in the adult rat. The attenuated fever and proinflammatory response is caused by a paradoxical, amplified, early corticosterone response to LPS. Here we identify the mechanisms underlying the heightened(More)