Shaul Hochstein

Learn More
We propose that explicit vision advances in reverse hierarchical direction, as shown for perceptual learning. Processing along the feedforward hierarchy of areas, leading to increasingly complex representations, is automatic and implicit, while conscious perception begins at the hierarchy's top, gradually returning downward as needed. Thus, our initial(More)
The performance of adult humans in simple visual tasks improves dramatically with practice. This improvement is highly specific to basic attributes of the trained stimulus, suggesting that the underlying changes occur at low-level processing stages in the brain, where different orientations and spatial frequencies are handled by separate channels. We asked(More)
Perceptual learning can be defined as practice-induced improvement in the ability to perform specific perceptual tasks. We previously proposed the Reverse Hierarchy Theory as a unifying concept that links behavioral findings of visual learning with physiological and anatomical data. Essentially, it asserts that learning is a top-down guided process, which(More)
Practising simple visual tasks leads to a dramatic improvement in performing them. This learning is specific to the stimuli used for training. We show here that the degree of specificity depends on the difficulty of the training conditions. We find that the pattern of specificities maps onto the pattern of receptive field selectivities along the visual(More)
1. The mechanism which makes Y cells different from X cells was investigated. 2. Spatial frequency contrast sensitivity functions for the fundamental and second harmonic responses of Y cells to alternating phase gratings were determined. 3. The fundamental spatial frequency response was predicted by the Fourier transform of the sensitivity profile of the Y(More)
The classification of cat retinal ganglion cells as X or Y on the basis of linearity or nonlinearity of spatial summation has been confirmed and extended. Recordings were taken from optic tract fibres of anaesthetized, paralysed cats. 2. When an alternating phase sine wave grating was used as a stimulus, X cells had null positions and Y cells responded at(More)
Training induces dramatic improvement in the performance of pop-out detection. In this study, we examined the specificities of this improvement to stimulus characteristics. We found that learning is specific within basic visual dimensions: orientation, size and position. Accordingly, following training with one set of orientations, rotating target and(More)
Revealing the relationships between perceptual representations in the brain and mechanisms of adult perceptual learning is of great importance, potentially leading to significantly improved training techniques both for improving skills in the general population and for ameliorating deficits in special populations. In this review, we summarize the essentials(More)
To determine the nature of face perception, several studies used the visual search paradigm, whereby subjects detect an odd target among distractors. When detection reaction time is set-size independent, the odd element is said to "pop out", reflecting a basic mechanism or map for the relevant feature. A number of previous studies suggested that schematic(More)