Sharon Zlochiver

Learn More
Heart failure (HF) commonly results in atrial fibrillation (AF) and fibrosis, but how the distribution of fibrosis impacts AF dynamics has not been studied. HF was induced in sheep by ventricular tachypacing (220 bpm, 6 to 7 weeks). Optical mapping (Di-4-ANEPPS, 300 frames/sec) of the posterior left atrial (PLA) endocardium was performed during sustained AF(More)
BACKGROUND Spectral analysis identifies localized sites of high-frequency activity during atrial fibrillation (AF). OBJECTIVE This study sought to determine the effectiveness of using real-time dominant frequency (DF) mapping for radiofrequency ablation of maximal DF (DFmax) sites and elimination of left-to-right frequency gradients in the long-term(More)
BACKGROUND Radiofrequency ablation therapy of atrial fibrillation (AF) recently incorporated the analysis of dominant frequency (DF) and/or electrogram fractionation for guidance. However, the relationships between DF, fractionation, and spatiotemporal characteristics of the AF source remain unclear. OBJECTIVE We hypothesize that a meandering reentrant AF(More)
In pathological conditions such as ischemic cardiomyopathy and heart failure, differentiation of fibroblasts into myofibroblasts may result in myocyte-fibroblast electrical coupling via gap junctions. We hypothesized that myofibroblast proliferation and increased heterocellular coupling significantly alter two-dimensional cardiac wave propagation and(More)
Current density threshold and liminal area are subthreshold parameters of the cardiac tissue that indicate its susceptibility to external and internal stimulations. Extensive experimental and theoretical research has been conducted to quantify these two parameters in normal conditions for both animal and human models. Here we employed a 2D numerical model(More)
Fibroblasts make for the most common nonmyocyte cells in the human heart and are known to play a role in structural remodeling caused by aging and various pathological states, which can eventually lead to cardiac arrhythmias and fibrillation. Gap junction formed between fibroblasts and myocytes have been recently described and were shown to alter the(More)
OBJECTIVES The aim of this paper was to study mechanisms of formation of fractionated electrograms on the posterior left atrial wall (PLAW) in human paroxysmal atrial fibrillation (AF). BACKGROUND The mechanisms responsible for complex fractionated atrial electrogram formation during AF are poorly understood. METHODS In 24 patients, we induced sustained(More)
BACKGROUND The posterior left atrium (PLA) and pulmonary veins (PVs) have been shown to be critical for atrial fibrillation (AF) initiation. However, the detailed mechanisms of reentry and AF initiation by PV impulses are poorly understood. We hypothesized that PV impulses trigger reentry and AF by undergoing wavebreaks as a result of sink-to-source(More)
The ventricular tissue is activated in a stochastic rather than in a deterministic rhythm due to the inherent heart rate variability (HRV). Low HRV is a known predictor for arrhythmia events and traditionally is attributed to autonomic nervous system tone damage. Yet, there is no model that directly assesses the antiarrhythmic effect of pacing stochasticity(More)
AIMS The goal was to terminate atrial fibrillation (AF) by targeting atrioventricular differences in ionic properties. METHODS AND RESULTS Optical mapping was used to record electrical activity during carbachol (0.25-0.5 μM)-induced AF in pig hearts. The atrial-specific current, I(Kur), was blocked with 100 μM 4-aminopyridine (4-AP) or with 0.5 μM DPO-1.(More)