Sharon Wald Krauss

Learn More
Structural protein 4.1, which has crucial interactions within the spectrin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we(More)
Structural protein 4.1, first identified as a crucial 80-kD protein in the mature red cell membrane skeleton, is now known to be a diverse family of protein isoforms generated by complex alternative mRNA splicing, variable usage of translation initiation sites, and posttranslational modification. Protein 4.1 epitopes are detected at multiple intracellular(More)
Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To(More)
Erythrocyte membrane skeletal protein 4.1 isoforms have been identified in a variety of non-erythroid cells. However, interactions between protein 4.1 and its binding partners in non-erythroid cell membranes are poorly understood. In the erythrocyte membrane, protein 4.1 binds to the cytoplasmic domain of band 3 and, through this interaction, modulates(More)
Adenosine uptake via nucleoside transporters is inhibited when S49 and NG108-15 cell lines cells are exposed to ethanol. This inhibition leads to an accumulation of extracellular adenosine that binds to adenosine A2 receptors and increases cAMP production. Subsequently, there is a heterologous desensitization of receptors coupled to adenylyl cyclase for(More)
Structural protein 4.1 was first characterized as an important 80-kDa protein in the mature red cell membrane skeleton. It is now known to be a member of a family of protein isoforms detected at diverse intracellular sites in many nucleated mammalian cells. We recently reported that protein 4.1 isoforms are present at interphase in nuclear matrix and are(More)
The multifunctional structural protein 4.1R is required for assembly and maintenance of functional nuclei but its nuclear roles are unidentified. 4.1R localizes within nuclei, at the nuclear envelope, and in cytoplasm. Here we show that 4.1R, the nuclear envelope protein emerin and the intermediate filament protein lamin A/C co-immunoprecipitate, and that(More)
Yeast splicing factor Prp43, a DEAH box protein of the putative RNA helicase/RNA-dependent NTPase family, is a splicing factor that functions late in the pre-mRNA splicing pathway to facilitate spliceosome disassembly. In this paper we report cDNA cloning and characterization of mDEAH9, an apparent mammalian homologue of Prp43. Amino acid sequence(More)
A novel form of DNA polymerase I (deoxynucleosidetriphosphate:DNA deoxynucleotidyltransferase, DNA nucleotidyltransferase, EC 2.7.7.7) activity has been isolated from Escherichia coli cells that had been activated for expression of the DNA damage-inducible genes. Induction was by treatment of normal cells or cells carrying the spr-51 and tif-1 mutations(More)
The erythroid membrane cytoskeletal protein 4.1 is the prototypical member of a genetically and topologically complex family that is generated by combinatorial alternative splicing pathways and is localized at diverse intracellular sites including the nucleus. To explore the molecular determinants for nuclear localization, we transfected COS-7 cells with(More)