Sharon Rabinovitz

Learn More
Major advances have been made in understanding the biochemistry of essential fatty acids (FA) and their interactions with metabolic pathways leading to the production of longer and more complex fatty acids and lipids. Less understood are the roles played by FA which are known to affect neurotransmitters, peptides, releasing factors, hormones, and a variety(More)
In addition to a gradual loss of neurons in various brain regions, major biochemical changes in the brain affect the neuronal membrane that is the "site of action" for many essential functions including long-term potentiation (LTP), learning and memory, sleep, pain threshold, and thermoregulation. Normal physiological functioning includes the transmission(More)
The role of fatty acids (FA) as a mediator and modulator of central nervous system activity in general, and peptides in particular, is only recently becoming understood. This paper reviews numerous findings concerned with the activity of fatty acids, particularly with their interaction with diverse neurochemical systems and their consequences for better(More)
Previous studies have shown that chronic administration of SR-3 (a 1:4 mixture of α-linolenic and linoleic acid) affects spatial learning, thermoregulation, pain threshold and protection from seizures. The mode of action is unknown. One possible explanation is that the preparation induces changes in the fatty acids profile and in the cholesterol level in(More)
The major effects of essential fatty acids (EFA) on brain structure and functions are reviewed. EFA determine the fluidity of neuronal membrane and control the physiological functions of the brain. EFA is also involved in synthesis and functions of brain neurotransmitters, and in the molecules of the immune system. Since they must be supplied from the diet,(More)
This study examined the possible effects of a novel mixture of fatty acids, SR-3 (a specific ratio of alpha-linolenic acids), on brain biochemistry and on learning deficits induced by injection of an agent that induces experimental allergic encephalomyelitis. Treatment with SR-3 caused a decrease in myelin and changes in the fatty acid profile of brain(More)
The role of fatty acids (FA) and their impact on nervous system activity and immune function has attracted much attention. The interest extends beyond a basic understanding of the potential role exerted by FA on the neuronal membrane and its properties, to the implications and clinical significance for many neurological disorders. This is especially true(More)
Cigarette smoke induces oxidative stress with subsequent polyunsaturated fatty acids (PUFAs) peroxidation. Low concentrations of omega-3 PUFAs can affect neurotransmission, resulting in hypofunctioning of the mesocortical systems associated with reward and dependence mechanisms and thus may increase cigarette craving, hampering smoking cessation efforts.(More)
Our previous study demonstrated that an olfactory bulbectomy in rats induced short-term, multifaceted, devastating Alzheimer’s-like effects, which included cognitive impairment, hyperactivity, hyperthermia, and increased levels of homocysteine and pro-inflammatory cytokines, including IL-17A. In addition, the rats exhibited an increase in the(More)
The neurochemical basis of sleep mechanisms (onset and maintenance) is still controversial although the phenomenon itself is known to be mediated by more than a single molecule. The list of suggested endogenous sleep substances is rather long, and there is no single 'sleep center' identified in the brain. The role of fatty acids, and essential fatty acids(More)