Sharon M. Weiss

Learn More
An integrated silicon photonics coupler for fiber to waveguide conversion was designed employing a transformation optics approach. Quasi-conformal mapping was used to obtain achievable material properties, which were realized by a distorted hexagonal lattice of air holes in silicon. The coupler, measuring only 10 μm in length and fabricated with a(More)
We propose a new design for an optical sensor based on porous silicon structures. We present an analysis based on a pole expansion, which allows for the easy identification of the parameters important for the operation of the sensor, and the phenomenological inclusion of scattering losses. The predicted sensitivity of the sensor is much greater than(More)
Electrical and thermal modulation of porous silicon microcavities is demonstrated based on a change in the refractive index of liquid crystals infiltrated in the porous silicon matrix. Positive and negative anisotropy liquid crystals are investigated, leading to controllable tuning to both longer and shorter wavelengths. Extinction ratios greater than 10 dB(More)
This work describes a technique for one-step, direct patterning of porous nanomaterials, including insulators, semiconductors, and metals without the need for intermediate polymer processing or dry etching steps. Our process, which we call "direct imprinting of porous substrates (DIPS)", utilizes reusable stamps with micro- and nanoscale features that are(More)
Judson D. Ryckman, Marco Liscidini, J. E. Sipe, and S. M. Weiss Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee 37235, USA Dipartimento di Fisica “A. Volta,” Università degli Studi di Pavia, via Bassi 6, 27100 Pavia, Italy Department of Physics and Institute for Optical Sciences, University of Toronto,(More)
A ring resonator is patterned on a porous silicon slab waveguide to produce a compact, high quality factor biosensor with a large internal surface area available for enhanced recognition of biological and chemical molecules. The porous nature of the ring resonator allows molecules to directly interact with the guided mode. Quality factors near 10,000 were(More)
Porous silicon (PSi) is an excellent material for biosensing due to its large surface area and its capability for molecular size selectivity. In this work, we report the experimental demonstration of a label-free nanoscale PSi resonant waveguide biosensor. The PSi waveguide consists of pores with an average diameter of 20nm. DNA is attached inside the pores(More)
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate(More)
In this work, we demonstrate improved molecular detection sensitivity for silicon slab photonic crystal cavities by introducing multiple-hole defects (MHDs), which increase the surface area available for label-free detection without degrading the quality factor. Compared to photonic crystals with L3 defects, adding MHDs into photonic crystal cavities(More)
Peptide nucleic acids (PNA) are a unique class of synthetic molecules that have a peptide backbone and can hybridize with nucleic acids. Here, a versatile method has been developed for the automated, in situ synthesis of PNA from a porous silicon (PSi) substrate for applications in gene therapy and biosensing. Nondestructive optical measurements were(More)