Learn More
Agricultural soils are typically fumigated to provide effective control of nematodes, soilborne pathogens, and weeds in preparation for planting of high-value cash crops. The ability of soil microbial communities to recover after treatment with fumigants was examined using culture-dependent (Biolog) and culture-independent (phospholipid fatty acid [PLFA](More)
The diversity of microbial communities constitutes a critical component of good soil-management practices. To characterize the effects of different management practices, molecular indicators such as phospholipid fatty acid (PLFA), denaturing gradient gel electrophoresis (DGGE) and composition of ammonia-oxidizing bacteria were used to analyze bacterial(More)
Sorption-desorption is one of the most important processes affecting the leaching of pesticides through soil because it controls the amount of pesticide available for transport. Subsurface soil properties can significantly affect pesticide transport and the potential for groundwater contamination. This research characterized the sorption-desorption of(More)
AIMS A microcosm-enrichment approach was used to investigate bacterial populations that may represent 1,3-dichloropropene (1,3-D)-degrading micro-organisms in compost-amended soil. METHODS AND RESULTS After 8 weeks of incubation, with repeated application of 1,3-D, volatilization fluxes were much lower for compost-amended soil (CM) than with the unamended(More)
Atmospheric emission of the soil fumigant 1,3-dichloropropene (1,3-D) has been associated with the deterioration of air quality in certain fumigation areas. To minimize the environmental impacts of 1,3-D, feasible and cost-effective control strategies are in need of investigation. One approach to reduce emissions is to enhance the surface layer of a soil to(More)
With the scheduled phasing out of methyl bromide, there is an urgent need for alternatives. We evaluated the efficacy of propargyl bromide as a potential replacement for methyl bromide for the control of barnyardgrass (Echinochloa crus-galli) and Fusarium oxysporum in an Arlington sandy loam, a Carsitas loamy sand and a Florida muck soil. Soil was mixed(More)
The mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) is used as a preplant soil fumigant. In comparison with individual fumigants, application of a mixture may affect the environmental dissipation and fate of each chemical, such as emission and degradation. We investigated the degradation of CP, 1,3-D, and their mixture in fresh soils and(More)
Chloropicrin (CP) and metam sodium are commonly used as fumigants in agricultural soils in order to provide effective control of nematodes, soil-borne pathogens, and weeds in preparation for planting of high-value cash crops. Repeated application of these compounds to agricultural soils for many years may result in the enrichment of microorganisms capable(More)
The fumigant 1,3-dichloropropene (1,3-D) has been identified as a partial replacement for methyl bromide (CH3Br) in soil fumigation. 1,3-Dichloropropene is formulated for soil fumigation as Telone II (Dow AgroSciences, Indianapolis, IN) for shank application and as an emulsifiable concentrate (EC) (Telone EC or InLine; Dow AgroSciences) for drip(More)
Pyrazosulfuron ethyl (PE) and halosulfuron methyl (HM) are two new highly active sulfonylurea herbicides that have been widely used for weed control in a variety of vegetables and other crops. These two herbicides have similar molecular structures, differing only in the substitutions on the pyrazole ring. Chemical hydrolysis is a primary process affecting(More)