Sharof A. Khudayberdiev

Learn More
Neuronal activity orchestrates the proper development of the neuronal circuitry by regulating both transcriptional and post-transcriptional gene expression programmes. How these programmes are coordinated, however, is largely unknown. We found that the transcription of miR379-410, a large cluster of brain-specific microRNAs (miRNAs), is induced by(More)
The microRNA pathway has been implicated in the regulation of synaptic protein synthesis and ultimately in dendritic spine morphogenesis, a phenomenon associated with long-lasting forms of memory. However, the particular microRNAs (miRNAs) involved are largely unknown. Here we identify specific miRNAs that function at synapses to control dendritic spine(More)
MicroRNAs (miRNAs) are an extensive class of small noncoding RNAs that control posttranscriptional gene expression. miRNAs are highly expressed in neurons where they play key roles during neuronal differentiation, synaptogenesis, and plasticity. It is also becoming increasingly evident that miRNAs have a profound impact on higher cognitive functions and are(More)
Specific microRNAs (miRNAs), including miR-134, localize to neuronal dendrites, where they control synaptic protein synthesis and plasticity. However, the mechanism of miRNA transport is unknown. We found that the neuronal precursor-miRNA-134 (pre-miR-134) accumulates in dendrites of hippocampal neurons and at synapses in vivo. Dendritic localization of(More)
Bipolar disorder (BD) is a severe and highly heritable neuropsychiatric disorder with a lifetime prevalence of 1%. Molecular genetic studies have identified the first BD susceptibility genes. However, the disease pathways remain largely unknown. Accumulating evidence suggests that microRNAs, a class of small noncoding RNAs, contribute to basic mechanisms(More)
MicroRNAs (miRNAs) are small non-coding RNAs with important functions in the development and plasticity of post-mitotic neurons. In addition to the well-described cytoplasmic function of miRNAs in post-transcriptional gene regulation, recent studies suggested that miRNAs could also be involved in transcriptional and post-transcriptional regulatory processes(More)
Neuronal activity controls the correct establishment and refinement of neuronal circuits by regulating key aspects such as dendritogenesis and spine development. Both transcriptional and post-transcriptional gene expression programs induced by neuronal activity have to be coordinated in a tight spatio-temporal manner in order for proper functioning of the(More)
Synaptic downscaling is a homeostatic mechanism that allows neurons to reduce firing rates during chronically elevated network activity. Although synaptic downscaling is important in neural circuit development and epilepsy, the underlying mechanisms are poorly described. We performed small RNA profiling in picrotoxin (PTX)-treated hippocampal neurons, a(More)
  • 1