Learn More
A mechanistic understanding of carcinogenic genotoxicity is necessary to determine consequences of chemical exposure on human populations and improve health risk assessments. Currently, linear dose-responses are assumed for DNA reactive compounds, ignoring cytoprotective processes that may limit permanent damage. To investigate the biological significance(More)
The development of novel nanomaterials with unique physico-chemical properties is increasing at a rapid rate, with potential applications across a broad range of manufacturing industries and consumer products. Nanomaterial safety is therefore becoming an increasingly contentious issue that has intensified over the past 4 years, and in response, a steady(More)
The in vitro labeling of therapeutic cells with nanoparticles (NPs) is becoming more and more common, but concerns about the possible effects of the NPs on the cultured cells are also increasing. In the present work, we evaluate the effects of poly(methacrylic acid)-coated 4 nm diameter Au NPs on a variety of sensitive and therapeutically interesting cell(More)
Single-walled carbon nanotubes (SWCNTs) have recently attracted great attention because of their fibrous structure and high aspect ratio. Here the genotoxic potential of 400-800 nm, 1-3 μm and 5-30 μm SWCNT with respect to their geometry and surface characteristics was studied. Following thorough physico-chemical characterisation, human bronchial epithelial(More)
Toxicity of nanoparticles (NPs) is often correlated with the physicochemical characteristics of the materials. However, some discrepancies are noted in in-vitro studies on quantum dots (QDs) with similar physicochemical properties. This is partly related to variations in cell type. In this study, we show that epithelial (BEAS-2B), fibroblast (HFF-1), and(More)
The reverse transcription - polymerase chain reaction (RT-PCR) is a sensitive technique for the quantification of steady-state mRNA levels, particularly in samples with limited quantities of extracted RNA, or for analysis of low level transcripts. The procedure amplifies defined mRNA transcripts by taking advantage of retroviral enzymes with reverse(More)
With the rapid expansion in the nanotechnology industry, it is essential that the safety of engineered nanomaterials and the factors that influence their associated hazards are understood. A vital area governing regulatory health risk assessment is genotoxicology (the study of genetic aberrations following exposure to test agents), as DNA damage may(More)
Superparamagnetic iron oxide nanoparticles (SPION) are being widely used for various biomedical applications, for example, magnetic resonance imaging, targeted delivery of drugs or genes, and in hyperthermia. Although, the potential benefits of SPION are considerable, there is a distinct need to identify any potential cellular damage associated with these(More)
Until recently, there has only been a limited amount of data available on the kinetics of mutation induction in the low dose region of exposure. In our publication Doak et al. [S.H. Doak, G.J. Jenkins, G.E. Johnson, E. Quick, E.M. Parry, J.M. Parry, Mechanistic influences for mutation induction curves after exposure to DNA-reactive carcinogens, Cancer Res.(More)
A workshop addressing strategies for the genotoxicity assessment of nanomaterials (NMs) was held on October 23, 2010 in Fort Worth Texas, USA. The workshop was organized by the Environmental Mutagen Society and the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute. The workshop was attended by more than 80 participants(More)