Sharangdhar S. Phatak

Learn More
As structural genomics (SG) projects continue to deposit representative 3D structures of proteins, homology modeling methods will play an increasing role in structure-based drug discovery. Although computational structure prediction methods provide a cost-effective alternative in the absence of experimental structures, developing accurate enough models(More)
As an important aspect of computer-aided drug design, structure-based drug design brought a new horizon to pharmaceutical development. This in silico method permeates all aspects of drug discovery today, including lead identification, lead optimization, ADMET prediction and drug repurposing. Structure-based drug design has resulted in fruitful successes(More)
3-Formylchromone (3-FC) has been associated with anticancer potential through a mechanism yet to be elucidated. Because of the critical role of NF-κB in tumorigenesis, we investigated the effect of this agent on the NF-κB activation pathway. Whether activated by inflammatory agents (such as TNF-α and endotoxin) or tumor promoters (such as phorbol ester and(More)
Recently, we discovered and reported a series of N-alkyl isatin acylhydrazone derivatives that are potent CB2 agonists. Here, we describe a novel series of selective CB2 inverse agonists resulting from introduction of a methoxy moiety in position 6 of the isatin scaffold. These novel 6-methoxy-N-alkyl isatin acylhydrazone derivatives exhibited high CB2(More)
G protein-coupled receptors (GPCRs) regulate a wide range of physiological functions and hold great pharmaceutical interest. Using the β(2)-adrenergic receptor as a case study, this article explores the applicability of docking-based virtual screening to the discovery of GPCR ligands and defines methods intended to improve the screening performance. Our(More)
Exploiting drug polypharmacology to identify novel modes of actions for drug repurposing has gained significant attentions in the current era of weak drug pipelines. From a serendipitous to systematic or rational ways, a variety of unimodal computational approaches have been developed but the complexity of the problem clearly needs multi-modal approaches(More)
BACKGROUND In the current situation of weak drug pipelines, impending patent expiration of several blockbuster drugs, industry consolidation and changing business models that target special diseases like cancer, diabetes, Alzheimer's and obesity, the pharmaceutical industry is under intense pressure to generate a strong drug pipeline distinguished by better(More)
Class A G-protein-coupled receptors (GPCRs) are among the most important targets for drug discovery. However, a large set of experimental structures, essential for a structure-based approach, will likely remain unavailable in the near future. Thus, there is an actual need for modeling tools to characterize satisfactorily at least the binding site of these(More)
We recently discovered and reported a series of N-alkyl-isatin acylhydrazone derivatives that are potent cannabinoid receptor 2 (CB(2)) agonists. In an effort to improve the druglike properties of these compounds and to better understand and improve the treatment of neuropathic pain, we designed and synthesized a new series of 2,3-dihydro-1-benzofuran(More)
The drug discovery process mainly relies on the experimental high-throughput screening of huge compound libraries in their pursuit of new active compounds. However, spiraling research and development costs and unimpressive success rates have driven the development of more rational, efficient, and cost-effective methods. With the increasing availability of(More)