Learn More
This paper introduces a new approach named double orthogonal sample design scheme (DOSD) to probe intermolecular interactions based on a framework of two-dimensional (2D) correlated spectroscopy. In this approach, specifically designed concentration series are selected according to the mathematical analysis on orthogonal vectors to generate useful 2D(More)
This paper introduces a new approach to analysis of spectra called asynchronous orthogonal sample design (AOSD). Specifically designed concentration series are selected according to mathematical analysis of orthogonal vectors. Based on the AOSD approach, the interfering portion of the spectra arising strictly from the concentration effect can be completely(More)
We report the discovery of a potentially useful superconcentrated HCl at ambient temperature and pressure by using a simple surfactant-based reversed micelle system. Surprisingly, the molar ratios of H(+) to H(2)O (denoted as n(H+)/n(H2O)) in superconcentrated HCl can be larger than 5, while the maximum achievable n(H+)/n(H2O) value for conventional(More)
This paper introduces a new approach to probing intermolecular interactions based on a framework of two-dimensional (2D) synchronous spectroscopy. Mathematical analysis performed on 2D synchronous spectra using variable concentration as an external perturbation shows that the cross-peaks are composed of two parts. The first part reflects intermolecular(More)
In this work, we developed a new method to prepare porous PA6 with different morphologic feature and crystalline forms via the decomplexation of PA6/CaCl2 composite. The structures and morphology of thus obtained materials were characterized by vibrational spectroscopy (FT-IR and Raman) and scanning electron microscope (SEM) method. When amorphous PA6/CaCl2(More)
This paper introduces a new approach called double asynchronous orthogonal sample design (DAOSD) to probe intermolecular interactions. A specifically designed concentration series is selected according to the mathematical analysis to generate useful 2D correlated spectra. As a result, the interfering portions are completely removed and a pair of(More)
  • 1