Learn More
In this paper, we present the method for our submission to the Emotion Recognition in the Wild Challenge (EmotiW 2014). The challenge is to automatically classify the emotions acted by human subjects in video clips under real-world environment. In our method, each video clip can be represented by three types of image set models (i.e. linear subspace,(More)
Fully automatic Face Recognition Across Pose (FRAP) is one of the most desirable techniques, however, also one of the most challenging tasks in face recognition field. Matching a pair of face images in different poses can be converted into matching their pixels corresponding to the same semantic facial point. Following this idea, given two images G and P in(More)
Expressions are facial activities invoked by sets of muscle motions, which would give rise to large variations in appearance mainly around facial parts. Therefore, for visual-based expression analysis, localizing the action parts and encoding them effectively become two essential but challenging problems. To take them into account jointly for expression(More)
Human-Namable visual attributes are promising in leveraging various recognition tasks. Intuitively, the more accurate the attribute prediction is, the more the recognition tasks can benefit. Relative attributes [1] learns a ranking function per attribute which can provide more accurate attribute prediction, thus, show clear advantages over previous binary(More)
Apparent age estimation from face image has attracted more and more attentions as it is favorable in some real-world applications. In this work, we propose an end-to-end learning approach for robust apparent age estimation, named by us AgeNet. Specifically, we address the apparent age estimation problem by fusing two kinds of models, i.e., real-value based(More)
Facial expression recognition is an important task in humancomputer interaction. Some methods work well on ”lab-controlled” data. However, their performances degenerate dramatically on real-world data as expression covers large variations, including pose, illumination, occlusion, and even culture change. To deal with this problem, large scale data is(More)
This report presents results from the Video Person Recognition Evaluation held in conjunction with the 11th IEEE International Conference on Automatic Face and Gesture Recognition. Two experiments required algorithms to recognize people in videos from the Point-and-Shoot Face Recognition Challenge Problem (PaSC). The first consisted of videos from a tripod(More)
Due to the misalignment of image features, the performance of many conventional face recognition methods degrades considerably in across pose scenario. To address this problem, many image matching-based methods are proposed to estimate semantic correspondence between faces in different poses. In this paper, we aim to solve two critical problems in previous(More)