Learn More
This study demonstrates that the adult form of 'tonotopic maps' of sound frequency in the rat primary auditory cortex (A1) arises from parallel developmental processes involving two cortical zones: the progressive differentiation and refinement of selectively tone-responsive receptive fields within an initially broadly-tuned posterior zone, and the(More)
Representations of sensory stimuli in the cerebral cortex can undergo progressive remodelling according to the behavioural importance of the stimuli. The cortex receives widespread projections from dopamine neurons in the ventral tegmental area (VTA), which are activated by new stimuli or unpredicted rewards, and are believed to provide a reinforcement(More)
Hearing loss often results in tinnitus and auditory cortical map changes, leading to the prevailing view that the phantom perception is associated with cortical reorganization. However, we show here that tinnitus is mediated by a cortical area lacking map reorganization. High-frequency hearing loss results in two distinct cortical regions: a(More)
Experience-dependent plasticity during development results in the emergence of highly adapted representations of the external world in the adult brain. Previous studies have convincingly shown that the primary auditory cortex (A1) of the rat possesses a postnatal period of sensory input-driven plasticity but its precise timing (onset, duration, end) has not(More)
Mice devoid of glial fibrillary acidic protein (GFAP), an intermediate filament protein specifically expressed in astrocytes, develop normally and do not show any detectable abnormalities in the anatomy of the brain. In the cerebellum, excitatory synaptic transmission from parallel fibers (PFs) or climbing fibers (CFs) to Purkinje cells is unaltered, and(More)
The mechanisms by which hearing selectivity is elaborated and refined in early development are very incompletely determined. In this study, we documented contributions of progressively maturing inhibitory influences on the refinement of spectral and temporal response properties in the primary auditory cortex. Inhibitory receptive fields (IRFs) of infant rat(More)
Processing of rapidly successive acoustic stimuli can be markedly improved by sensory training. To investigate the cortical mechanisms underlying such temporal plasticity, we trained rats in a 'sound maze' in which navigation using only auditory cues led to a target location paired with food reward. In this task, the repetition rate of noise pulses(More)
In the primary auditory cortex (AI), the development of tone frequency selectivity and tonotopic organization is influenced by patterns of neural activity. Introduction of synchronous inputs into the auditory pathway achieved by exposing rat pups to pulsed white noise at a moderate intensity during P9-P28 resulted in a disrupted tonotopicity and degraded(More)
It is generally believed that a smooth execution of a compound movement, or motor coordination, requires learning of component movements as well as experience-based refinement of the motor program as a whole. PKC gamma mutant mice display impaired motor coordination but intact eyeblink conditioning, a form of component movement learning. Cerebellar(More)
Simple tonal stimuli can shape spectral tuning of cortical neurons during an early epoch of brain development. The effects of complex sound experience on cortical development remain to be determined. We exposed rat pups to a frequency-modulated (FM) sweep in different time windows during early development, and examined the effects of such sensory experience(More)